CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT II TEST 3 (PREVIEW)

Time: 1 Hour \& 20 minutes

1. Candidates applying for jobs in a large company take a test, as a result of which they are either accepted, rejected or retested, with probabilities $0.2,0.5$ and 0.3 respectively. When a candidate is retested for the first time, the three possible outcomes and their probabilities remain the same as for the original test. When a candidate is retested for the second time there are just two possible outcomes, accepted or rejected with probabilities 0.4 and 0.6 respectively.
(i) Draw a probability tree diagram to illustrate the outcomes.
(ii) Find the probability that a randomly selected candidate is accepted.
(iii) Find the probability that a randomly selected candidate is re-tested at least once, given that this candidate is accepted.
2. A car park has spaces for 18 cars, arranged in a line. On one day there are 5 cars, of different makes, parked in randomly chosen positions and empty spaces.
(i) Find the number of possible arrangements of the cars in the car park.
(ii) Find the probability that the 5 cars are not all next to each other.

On another day, 12 cars of different makes are parked in the car park. 5 of these cars are red, 4 are white and 3 are black. Elizabeth selects 3 of these cars.
(iii) Find the number of selections Elizabeth can make that include cars of at least 2 different colours.
3. (a) Use an integrating factor to find the solution of the differential equation

$$
\frac{d y}{d x}-\frac{3}{x} y=2 x^{4} e^{2 x}
$$

(b) Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=5 x^{2}+3
$$

4. A nursery sells three brands of grass - send mix, P, Q and R. Each brand is made from three types of grass, C, Z and B. The number of kilograms of each type of grass in a bag of each brand is summarized in the table below.

Grass Seed Mix	Type of Grass (Kilograms)		
	C - grass	Z - grass	B - grass
	2	2	6
Brand Q	4	2	4
Brand R	0	6	4
Blend	c	z	b

A blend is produced by mixing p bags of Brand P, q bags of Brand Q and r bags of Brand R.
(i) Write down an expression in terms of p, q and r for the number of kilograms of Z - grass in the blend.
(ii) Let c, z and b represent the number of kilograms of C-grass, Z - grass and B - grass respectively in the blend. Write down a set of THREE equations in p, q and r to represent the number of kilograms of EACH type of grass in the blend.
(iii) Rewrite the set of THREE equations in (b) (ii) above in the matrix form $M X=D$ where M is a 3 by 3 matrix, X and D are column matrices.
(iv) Determine M^{-1}.
(v) Hence, calculate how many bags of EACH blend, P, Q and R are required to produce a blend containing 30 kilograms of C - grass, 30 kilograms of Z - grass and 50 kilograms of B - grass.

ANSWERS

1. (i)
(ii) 0.296 (iii) 0.324
2. (i) $1,028,160$ (ii) 0.998 (iii) 205
3. (a) $y=c x^{3}+e^{2 x} x^{4}-\frac{1}{2} e^{2 x} x^{3} \quad$ (b) $y=A e^{2 x}+B e^{3 x}+\frac{5}{6} x^{2}+\frac{25}{18} x+\frac{149}{108}$
4. (i) $2 p+2 q+6 r$
(ii) $2 p+4 q=c, 2 p+2 q+6 r=z, 6 p+4 q+4 r=b$
(iii) $\left(\begin{array}{lll}2 & 4 & 0 \\ 2 & 2 & 6 \\ 6 & 4 & 4\end{array}\right)\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{l}c \\ z \\ b\end{array}\right)$
(iv) $\frac{1}{20}\left(\begin{array}{ccc}-4 & -4 & 6 \\ 2 & 2 & 6 \\ 6 & 4 & 4\end{array}\right)$
(v) $\left(\begin{array}{l}3 \\ 6 \\ 2\end{array}\right)$
