UNIT 2 TEST 1 SBA 2017

PREVIEW

1. Differentiate with respect to *x*.

(a)
$$x \cos^{-1}\left(\frac{x}{2}\right)$$
 [3]
(b) $\frac{\ln(x^3+2)}{x}$ [3]

$$\frac{\ln(x+2)}{x}$$
[3]

(a)
$$\cos^{-1}\left(\frac{x}{2}\right) - \frac{x}{2\sqrt{1-\left(\frac{x}{2}\right)^2}}$$
 (b) $\frac{3x}{x^3+2} - \frac{\ln(x^3+2)}{x^2}$

- 2. A curve *C* has equation $2^x + 2y^2 = 4xy$ Find the exact value of $\frac{dy}{dx}$ at the point on *C* with coordinates (6, 4). [7]
- 3. A curve *C* has parametric equations

$$x = \cos^2 t$$
, $y = 2 \cot t$, $0 \le t < \frac{\pi}{2}$

(a) Find $\frac{dy}{dx}$ in terms of *t*. [4]

The tangent to *C* at the point where $t = \frac{\pi}{3}$ cuts the *x*-axis at the point *P*.

- (b) Find the *x*-coordinate of *P*. [6]
 - (a) $\frac{dy}{dx} = \frac{\csc^2 t}{\sin t \cos t}$ (b) $x = -\frac{1}{8}$

 $8\ln 2 - 2 = \frac{dy}{dx}$

4. Using the substitution $u = \sin x + 2$, or otherwise, show that

$$\int_{0}^{\frac{\pi}{2}} e^{\sin x +} \cos x \, dx = e^{2}(e-1)$$

[6]

5. (a) Use the trapezium rule with 6 strips, to approximate correct to 3 decimal places,

$$x^2 \ln x \, dx$$

[22.868]

(b) Determine the exact value, in the form $\frac{1}{3}(a \ln 2 - b)$, of

$$\int_{1}^{4} x^2 \ln x \, dx$$

[7]

[3]

$$\frac{1}{3}(128\ln 2 - 21)$$

- 6. Given that $z = \sqrt{2} i$
 - (a) Determine $\frac{z}{z^*}$ [3]
 - (b) Find the value of $\left|\frac{z}{z^*}\right|$ [2]

(c) Verify, for
$$z = \sqrt{2} - i$$
, that $\arg\left(\frac{z}{z^*}\right) = \arg z - \arg z^*$ [4]

(d) Display on a single Argand diagram z, z^* and $\frac{z}{z^*}$. [3]

(a)
$$\frac{1}{3} - \frac{2\sqrt{2}}{3}i$$
 (b) 1

7. Given that 2 + i is a root of the equation f(x) = 0, where

$$f(x) = 2x^3 + ax^2 + bx - 60$$
 $a, b \in \mathbb{R}$

- (a) find the other two roots of the equation f(x) = 0, [4]
- (b) find the value of *a* and the value of *b*.

(a)
$$2 - i$$
, 6 (b) $a = -20$, $b = 58$