PREVIEW

1. Differentiate with respect to x.
(a) $x \cos ^{-1}\left(\frac{x}{2}\right)$
(b) $\frac{\ln \left(x^{3}+2\right)}{x}$
(a) $\cos ^{-1}\left(\frac{x}{2}\right)-\frac{x}{2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}}$
(b) $\frac{3 x}{x^{3}+2}-\frac{\ln \left(x^{3}+2\right)}{x^{2}}$
2. A curve C has equation $2^{x}+2 y^{2}=4 x y$

Find the exact value of $\frac{d y}{d x}$ at the point on C with coordinates $(6,4)$.
$8 \ln 2-2=\frac{d y}{d x}$
3. A curve C has parametric equations

$$
x=\cos ^{2} t, \quad y=2 \cot t, \quad 0 \leq t<\frac{\pi}{2}
$$

(a) Find $\frac{d y}{d x}$ in terms of t.

The tangent to C at the point where $t=\frac{\pi}{3}$ cuts the x-axis at the point P.
(b) Find the x-coordinate of P.

$$
\text { (a) } \frac{d y}{d x}=\frac{\csc ^{2} t}{\sin t \cos t} \text { (b) } x=-\frac{1}{8}
$$

4. Using the substitution $u=\sin x+2$, or otherwise, show that

$$
\int_{0}^{\frac{\pi}{2}} e^{\sin x+} \cos x d x=e^{2}(e-1)
$$

5. (a) Use the trapezium rule with 6 strips, to approximate correct to 3 decimal places,

$$
\int_{1}^{4} x^{2} \ln x d x
$$

(b) Determine the exact value, in the form $\frac{1}{3}(a \ln 2-b)$, of

$$
\int_{1}^{4} x^{2} \ln x d x
$$

$$
\begin{equation*}
\frac{1}{3}(128 \ln 2-21) \tag{7}
\end{equation*}
$$

6. Given that $z=\sqrt{2}-i$
(a) Determine $\frac{z}{z^{*}}$
(b) Find the value of $\left|\frac{z}{z^{*}}\right|$
(c) Verify, for $z=\sqrt{2}-i$, that $\arg \left(\frac{z}{z^{*}}\right)=\arg z-\arg z^{*}$
(d) Display on a single Argand diagram z, z^{*} and $\frac{z}{z^{*}}$.

$$
\text { (a) } \frac{1}{3}-\frac{2 \sqrt{2}}{3} i
$$

(b) 1
7. Given that $2+i$ is a root of the equation $f(x)=0$, where

$$
f(x)=2 x^{3}+a x^{2}+b x-60 \quad a, b \in \mathbb{R}
$$

(a) find the other two roots of the equation $f(x)=0$,
(b) find the value of a and the value of b.
(a) $2-i, 6$ (b) $a=-20, b=58$

