FORM TP 2013236

TEST CODE 02234020

MAY/JUNE 2013

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

PURE MATHEMATICS

UNIT 2 – Paper 02

ANALYSIS, MATRICES AND COMPLEX NUMBERS

2 hours 30 minutes

29 MAY 2013 (p.m.)

This examination paper consists of **THREE** sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions. The maximum mark for each Module is 50. The maximum mark for this examination is 150. This examination consists of 6 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. **DO NOT** open this examination paper until instructed to do so.

2. Answer ALL questions from the THREE sections.

- 3. Write your solutions, with full working, in the answer booklet provided.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided) Mathematical formulae and tables (provided) – **Revised 2012** Mathematical instruments Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2012 Caribbean Examinations Council All rights reserved.

SECTION A (Module 1)

Answer BOTH questions.

- 1. (a) Calculate the gradient of the curve $\ln (x^2y) \sin y = 3x 2y$ at the point (1, 0). [5 marks]
 - (b) Let $f(x, y, z) = 3yz^2 e^{4x}\cos 4z 3y^2 4 = 0$.

Given that
$$\frac{\partial z}{\partial y} = -\frac{\partial f / \partial y}{\partial f / \partial z}$$
, determine $\frac{\partial z}{\partial y}$ in terms of x, y and z. [5 marks]

(c) Use de Moivre's theorem to prove that

$$\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta.$$

(d) (i) Write the complex number $z = (-1 + i)^7$ in the form $re^{i\theta}$, where r = |z| and $\theta = \arg z$. [3 marks]

(ii) Hence, prove that $(-1 + i)^7 = -8(1 + i)$. [6 marks]

Total 25 marks

[6 marks]

(i) Determine $\int \sin x \cos 2x \, dx$. [5 marks] (ii) Hence, calculate $\int_{0}^{\frac{\pi}{2}} \sin x \cos 2x \, dx$. [2 marks]

(b) Let
$$f(x) = x |x| = \begin{cases} x^2 ; x \ge 0 \\ -x^2 ; x < 0 \end{cases}$$

Use the trapezium rule with four intervals to calculate the area between f(x) and the x-axis for the domain $-0.75 \le x \le 2.25$. [5 marks]

(i) Show that
$$\frac{2x^2+4}{(x^2+4)^2} = \frac{2}{x^2+4} - \frac{4}{(x^2+4)^2}$$
. [6 marks]

(ii) Hence, find
$$\int \frac{2x^2 + 4}{(x^2 + 4)^2} dx$$
. Use the substitution $x = 2 \tan \theta$. [7 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

2.

(a)

(c)

SECTION B (Module 2)

Answer BOTH questions.

(a) The sequence $\{a_n\}$ is defined by $a_1 = 1$, $a_{n+1} = 4 + 2\sqrt[3]{a_n}$.

Use mathematical induction to prove that $1 \le a_n \le 8$ for all *n* in the set of positive integers. [6 marks]

(b) Let
$$k > 0$$
 and let $f(k) = \frac{1}{k^2}$.

(i) Show that

a)
$$f(k) - f(k+1) = \frac{2k+1}{k^2 (k+1)^2}$$
. [3 marks]

b)
$$\sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) = 1 - \frac{1}{(n+1)^2}.$$
 [5 marks]

(iii) Hence, or otherwise, prove that

$$\sum_{k=1}^{\infty} \frac{2k+1}{k^2 (k+1)^2} = 1.$$
 [3 marks]

(i) Obtain the first four non-zero terms of the Taylor Series expansion of $\cos x$ in ascending powers of $(x - \frac{\pi}{4})$. [5 marks]

(ii) Hence, calculate an approximation to $\cos(\frac{\pi}{16})$. [3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

02234020/CAPE 2013

3.

(c)

4.

(a)

(i) Obtain the binomial expansion of

$$\sqrt[4]{(1+x)} + \sqrt[4]{(1-x)}$$

up to the term containing x^2 .

- (ii) Hence, by letting $x = \frac{1}{16}$, compute an approximation of $\sqrt[4]{17} + \sqrt[4]{15}$ to four decimal places.
- (b) Show that the coefficient of the x^5 term of the product $(x + 2)^5 (x 2)^4$ is 96. [7 marks]
- (c) (i) Use the Intermediate Value Theorem to prove that $x^3 = 25$ has at least one root in the interval [2, 3]. [3 marks]
 - (ii) The table below shows the results of the first four iterations in the estimation of the root of $f(x) = x^3 25 = 0$ using interval bisection.

The procedure used a = 2 and b = 3 as the starting points and p_n is the estimate of the root for the n^{th} iteration.

n	a_n	b _n	p _n	$f(p_n)$
1	2	3	2.5	-9.375
2	2.5	3	2.75	-4.2031
3	2.75	3	2.875	-1.2363
4	2.875	3	2.9375	0.3474
5				
6				
••••				

Complete the table to obtain an approximation of the root of the equation $x^3 = 25$ correct to 2 decimal places. [7 marks]

Total 25 marks

[4 marks]

GO ON TO THE NEXT PAGE

SECTION C (Module 3)

Answer BOTH questions.

(a) Three letters from the word BRIDGE are selected one after the other without replacement.When a letter is selected, it is classified as either a vowel (V) or a consonant (C).

Use a tree diagram to show the possible outcomes (vowel or consonant) of the THREE selections. Show all probabilities on the diagram. [7 marks]

(b)

5.

(i) The augmented matrix for a system of three linear equations with variables x, y and z respectively is

	$\int 1$	1	-1	$ 1\rangle$
A =	-5	1	1	2
	1	-5	3	3)
				/

By reducing the augmented matrix to echelon form, determine whether or not the system of linear equations is consistent. [5 marks]

(ii) The augmented matrix for another system is formed by replacing the THIRD row of A in (i) above with $(1-5 \ 5 \ 3)$.

Determine whether the solution of the new system is unique. Give a reason for your answer. [5 marks]

(c) A country, X, has three airports (A, B, C). The percentage of travellers that use each of the airports is 45%, 30% and 25% respectively. Given that a traveller has a weapon in his/ her possession, the probability of being caught is, 0.7, 0.9 and 0.85 for airports A, B, and C respectively.

Let the event that:

- the traveller is caught be denoted by D, and
- the event that airport A, B, or C is used be denoted by A, B, and C respectively.
- (i) What is the probability that a traveller using an airport in Country X is caught with a weapon? [5 marks]
- (ii) On a particular day, a traveller was caught carrying a weapon at an airport in Country X. What is the probability that the traveller used airport C? [3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

6.

(a)

(i) Obtain the general solution of the differential equation

$$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = 2x \cos^2 x.$$
 [7 marks]

(ii) Hence, given that $y = \frac{15\sqrt{2}\pi^2}{32}$, when $x = \frac{\pi}{4}$, determine the constant of the integration. [5 marks]

(b) The general solution of the differential equation

$$y'' + 2y' + 5y = 4 \sin 2t$$

is y = CF + PI, where CF is the complementary function and PI is a particular integral.

(i) a) Calculate the roots of

 $\lambda^2 + 2\lambda + 5 = 0$, the auxiliary equation. [2 marks]

b) Hence, obtain the complementary function (CF), the general solution of

$$y'' + 2y' + 5y = 0.$$
 [3 marks]

(ii) Given that the form of the particular integral (*PI*) is

$$u_{n}(t) = A\cos 2t + B\sin 2t,$$

Show that
$$A = -\frac{16}{17}$$
 and $B = \frac{4}{17}$. [3 marks]

(iii) Given that y(0) = 0.04 and y'(0) = 0, obtain the general solution of the differential equation. [5 marks]

Total 25 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.