CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$
 PURE MATHEMATICS

UNIT 2 - Paper 02

ANALYSIS, MATRICES AND COMPLEX NUMBERS

2 hours 30 minutes

29 MAY 2013 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.
Each section consists of 2 questions.
The maximum mark for each Module is 50 .
The maximum mark for this examination is 150 .
This examination consists of 6 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. DO NOT open this examination paper until instructed to do so.
2. Answer ALL questions from the THREE sections.
3. Write your solutions, with full working, in the answer booklet provided.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)
Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2012 Caribbean Examinations Council
All rights reserved.

SECTION A (Module 1)

Answer BOTH questions.

1. (a) Calculate the gradient of the curve $\ln \left(x^{2} y\right)-\sin y=3 x-2 y$ at the point $(1,0)$.
(b) Let $f(x, y, z)=3 y z^{2}-e^{4 x} \cos 4 z-3 y^{2}-4=0$.

Given that $\frac{\partial z}{\partial y}=-\frac{\partial f / \partial y}{\partial f / \partial z}$, determine $\frac{\partial z}{\partial y}$ in terms of x, y and z.
(c) Use de Moivre's theorem to prove that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

(d) (i) Write the complex number $z=(-1+i)^{7}$ in the form $r e^{i \theta}$, where $r=|z|$ and $\theta=\arg z$.
(ii) Hence, prove that $(-1+i)^{7}=-8(1+i)$.
2.
(a) (i) Determine $\int \sin x \cos 2 x d x$.
(ii) Hence, calculate $\int_{0}^{\frac{\pi}{2}} \sin x \cos 2 x \mathrm{~d} x$.
(b) Let $f(x)=x|x|=\left\{\begin{aligned} x^{2} & ; x \geq 0 \\ -x^{2} & ; x<0\end{aligned}\right.$.

Use the trapezium rule with four intervals to calculate the area between $f(x)$ and the x-axis for the domain $-0.75 \leq x \leq 2.25$.
(c) (i) Show that $\frac{2 x^{2}+4}{\left(x^{2}+4\right)^{2}}=\frac{2}{x^{2}+4}-\frac{4}{\left(x^{2}+4\right)^{2}}$.
(ii) Hence, find $\int \frac{2 x^{2}+4}{\left(x^{2}+4\right)^{2}} \mathrm{~d} x$. Use the substitution $x=2 \tan \theta$.

SECTION B (Module 2)

Answer BOTH questions.

3. (a) The sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{n+1}=4+2 \sqrt[3]{a_{n}}$.

Use mathematical induction to prove that $1 \leq a_{n} \leq 8$ for all n in the set of positive integers.
(b) Let $k>0$ and let $f(k)=\frac{1}{k^{2}}$.
(i) Show that
a) $f(k)-f(k+1)=\frac{2 k+1}{k^{2}(k+1)^{2}}$.
[3 marks]
b) $\sum_{k=1}^{n}\left(\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}\right)=1-\frac{1}{(n+1)^{2}}$.
[5 marks]
(iii) Hence, or otherwise, prove that

$$
\sum_{k=1}^{\infty} \frac{2 k+1}{k^{2}(k+1)^{2}}=1 .
$$

[3 marks]
(c) (i) Obtain the first four non-zero terms of the Taylor Series expansion of $\cos x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$.
(ii) Hence, calculate an approximation to $\cos \left(\frac{\pi}{16}\right)$.
4. (a) (i) Obtain the binomial expansion of

$$
\sqrt[4]{(1+x)}+\sqrt[4]{(1-x)}
$$

up to the term containing x^{2}.
(ii) Hence, by letting $x=\frac{1}{16}$, compute an approximation of $\sqrt[4]{17}+\sqrt[4]{15}$ to four
decimal places.
(b) Show that the coefficient of the x^{5} term of the product $(x+2)^{5}(x-2)^{4}$ is 96 .
(c) (i) Use the Intermediate Value Theorem to prove that $x^{3}=25$ has at least one root in the interval $[2,3]$.
(ii) The table below shows the results of the first four iterations in the estimation of the root of $f(x)=x^{3}-25=0$ using interval bisection.

The procedure used $a=2$ and $b=3$ as the starting points and p_{n} is the estimate of the root for the $n^{\text {th }}$ iteration.

n	a_{n}	b_{n}	p_{n}	$f\left(p_{n}\right)$
1	2	3	2.5	-9.375
2	2.5	3	2.75	-4.2031
3	2.75	3	2.875	-1.2363
4	2.875	3	2.9375	0.3474
5				
6				
$\ldots \ldots .$.				
$\ldots . .$.				

Complete the table to obtain an approximation of the root of the equation $x^{3}=25$ correct to 2 decimal places.

SECTION C (Module 3)

Answer BOTH questions.

5. (a) Three letters from the word BRIDGE are selected one after the other without replacement. When a letter is selected, it is classified as either a vowel (V) or a consonant (C).

Use a tree diagram to show the possible outcomes (vowel or consonant) of the THREE selections. Show all probabilities on the diagram.
(b) (i) The augmented matrix for a system of three linear equations with variables x, y and z respectively is

$$
A=\left(\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
-5 & 1 & 1 & 2 \\
1 & -5 & 3 & 3
\end{array}\right)
$$

By reducing the augmented matrix to echelon form, determine whether or not the system of linear equations is consistent.
[5 marks]
(ii) The augmented matrix for another system is formed by replacing the THIRD row of A in (i) above with ($\left.\begin{array}{ll|l}1-5 & 5 & 3\end{array}\right)$.

Determine whether the solution of the new system is unique. Give a reason for your answer.
(c) A country, X, has three airports (A, B, C). The percentage of travellers that use each of the airports is $45 \%, 30 \%$ and 25% respectively. Given that a traveller has a weapon in his/ her possession, the probability of being caught is, $0.7,0.9$ and 0.85 for airports A, B, and C respectively.

Let the event that:

- the traveller is caught be denoted by D, and
- the event that airport A, B, or C is used be denoted by A, B, and C respectively.
(i) What is the probability that a traveller using an airport in Country X is caught with a weapon?
(ii) On a particular day, a traveller was caught carrying a weapon at an airport in Country X. What is the probability that the traveller used airport C ? [3 marks]

Total 25 marks
6. (a) (i) Obtain the general solution of the differential equation

$$
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \sin x=2 x \cos ^{2} x
$$

(ii) Hence, given that $y=\frac{15 \sqrt{2} \pi^{2}}{32}$, when $x=\frac{\pi}{4}$, determine the constant of the integration.
[5 marks]
(b) The general solution of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 \sin 2 t
$$

is $y=C F+P I$, where $C F$ is the complementary function and $P I$ is a particular integral.
(i) a) Calculate the roots of

$$
\lambda^{2}+2 \lambda+5=0, \text { the auxiliary equation. }
$$

b) Hence, obtain the complementary function ($C F$), the general solution of

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 .
$$

(ii) Given that the form of the particular integral ($P I$) is

$$
u_{p}(t)=A \cos 2 t+B \sin 2 t
$$

Show that $A=-\frac{16}{17}$ and $B=\frac{4}{17}$.
(iii) Given that $y(0)=0.04$ and $y^{\prime}(0)=0$, obtain the general solution of the differential equation.

END OF TEST

