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SECTION A (Module 1)

Answer BOTH questions.

1. (a) (i) Given the curve y = x' e',

a) [5 marks]

b) find the x-coordinates of the points at which ~ = 0 [2 marks]

c) find the x-coordinates of the points at which ~ = 0 [2 marks]

(ii) Hence, determine if the coordinates identified in (i) b) and c) above are at the
maxima, minima or points of inflection of y = r- e'. [7 marks]

(b) A curve is defined by the parametric equations x = sin:' -rt, y = f - 2t.

Find

(i) the gradient of a tangent to the curve at the point with parameter t

(ii) the equation ofthe tangent at the point where t = ~ .

[6 marks]

[3 marks]

Total 25 marks
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2. (a) (i) Express

X2_ 3x--'--::"::":"'-- in partial fractions.
(x-1)(x2+ 1)

[7 marks]

(ii) Hence, find

[5 marks]

(b) (i) Given that sin A cos B - cos A sin B = sin (A - B) show that

cos 3x sin x = sin 3x cos x - sin 2x. [2 marks]

(ii) If I = fcosm x sin 3x dx andm

J = fcosm x sin 2x dx,m

prove that (m + 3) 1
m
= mJ

m
_
1

- cos" x cos 3x. [7 marks]

(iii) Hence, by putting m = 1, prove that

n n

4 f"4 cos x sin 3x dx = f"4 sin 2x dx + 23 .
o 0

[2 marks]

n

(iv) Evaluate f"4 sin 2x dx.
o

[2 marks]

Total 25 marks
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SECTION B (Module 2)

Answer BOTH questions.

3. (a) For a particular G.P., u
6

= 486 and u
ll

= 118098, where un is the nth term.

(i) Calculate the first term, a, and the common ratio, r. [5 marks]

[4 marks] I,
J

[2 marks]

(ii) Hence, calculate n if S = 177 146.
11

(b) The first four terms ofa sequence are 1 x 3, 2 x 4, 3 x 5,4 x 6.

(i) Express, in terms ofr, the rth term, u,., of the sequence.

(ii) Prove, by mathematical induction, that

r= I

£ U = _1 n (n+ 1) (2n + 7), vn E N.
r 6 [7 marks]

(c) (i) Use Maclaurin's Theorem to find the first three non-zero terms in the power series
expansion of cos 2x. [5 marks]

(ii) Hence, or otherwise, obtain the first two non-zero terms in the power series
expansion of sin" x. [2 marks]

Total 25 marks

)
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4. (a) (i) Express [ ~ J in terms of factorials. [1 mark]

(ii) Hence, show that [ ~ J ~ [n: .] [3 marks]

(iii) Find the coefficient of x' in ~ - ;J [5 marks]

(iv) Using the identity (1 + x)2n = (1 + x)" (1 + x)", show that

[2nnJ ~ c; + c; + c; + ... + c; - I + c;, where < ~ [ ~J.
[8 marks]

(b) Letf(x) = 2x3 + 3x2
- 4x - 1 = O.

(i) Use the intermediate value theorem to determine whether the equationf(x) has
any roots in the interval [0.2, 2]. [2 marks]

(ii) Using x. = 0.6 as a first approximation ofaroot T off(x), execute FOUR iterations
of the Newton-Raphson method to obtain a second approximation, x2, ofT.

[6 marks]

Total 25 marks
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SECTION C (Module 3)

Answer BOTH questions.

5. (a) How many 4-digit even numbers can be formed from the digits 1,2,3,4,6, 7, 8

(i) if each digit appears at most once? [4 marks]

(ii) ifthere is no restriction on the number of times a digit may appear? [3 marks]

(b) A committee of five is to be formed from among six Jamaicans, two Tobagonians and
three Guyanese.

(i) Find the probability that the committee consists entirely of Jamaicans.
[3 marks]

(ii) Find the number of ways in which the committee can be formed, given the
following restriction: There are as many Tobagonians on the committee as there
are Guyanese. [6 marks]

(c) Let A be the matrix [ 1 0 3J
2 1 -1 .
1 -1 1

(i) Find the matrix B, where B = A2 - 3A - I. [3 marks]

(ii) Show that AB = -91. [1mark]

(iii) Hence, find the inverse, A~I, of A. [2 marks]

(iv) Solve the system oflinear equations

[3 marks]

Total 25 marks
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6. (a) (i) Draw the points A and B on an Argand diagram,

1+i {2
where A = -1-' and B = -1-' . [6 marks]

-1 -1

(ii) Hence, or otherwise, show that the argument of (1 +1~ + i) is EXACTLY 3n .-/ 8
[5 marks]

(b) (i) Find ALL complex numbers, z, such that z' = i. [3 marks]

(ii) Hence, find ALL complex roots of the equation

Z2 - (3 + 5i) Z - (4 - 7i) = O. [5 marks]

(c) Use de Moivre's theorem to show that

cos 6 ()= cos'' () - 15 cos" () sirr' ()+ 15 cos' ()sin" () - sin" () . [6 marks]

Total 25 marks

END OF TEST
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