FORM TP 2012234

TEST CODE 02234020

MAY/JUNE 2012

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 2 – Paper 02

ANALYSIS, MATRICES AND COMPLEX NUMBERS

2 hours 30 minutes

25 MAY 2012 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions. The maximum mark for each Module is 50. The maximum mark for this examination is 150. This examination consists of 7 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. **DO NOT** open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Write your solutions, with full working, in the answer booklet provided.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided) Mathematical formulae and tables (provided) – **Revised 2012** Mathematical instruments Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2011 Caribbean Examinations Council All rights reserved.

SECTION A (Module 1)

Answer BOTH questions.

1.

(a)

- (i) Given the curve $y = x^2 e^x$,
 - a) find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ [5 marks]
 - b) find the *x*-coordinates of the points at which $\frac{dy}{dx} = 0$ [2 marks]
 - c) find the *x*-coordinates of the points at which $\frac{d^2y}{dx^2} = 0$ [2 marks]

(ii) Hence, determine if the coordinates identified in (i) b) and c) above are at the maxima, minima or points of inflection of $y = x^2 e^x$. [7 marks]

(b) A curve is defined by the parametric equations $x = \sin^{-1} \sqrt{t}$, $y = t^2 - 2t$.

Find

(i) the gradient of a tangent to the curve at the point with parameter t [6 marks]

(ii) the equation of the tangent at the point where $t = \frac{1}{2}$. [3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

- 3 -

2. (a)

(i) Express

$$\frac{x^2 - 3x}{(x-1)(x^2+1)}$$
 in partial fractions. [7 marks]

(ii) Hence, find

ſ

$$\frac{x^2 - 3x}{x^3 - x^2 + x - 1} \, \mathrm{d}x.$$
 [5 marks]

(b)

Given that $\sin A \cos B - \cos A \sin B = \sin (A - B)$ show that

[2 marks]

$$\cos 3x \sin x = \sin 3x \cos x - \sin 2x.$$

(ii) If
$$I_m = \int \cos^m x \sin 3x \, dx$$
 and

$$J_m = \int \cos^m x \sin 2x \, \mathrm{d}x,$$

prove that $(m + 3) I_m = mJ_{m-1} - \cos^m x \cos 3x.$ [7 marks] Hence, by putting m = 1, prove that

$$4\int_{0}^{\frac{\pi}{4}} \cos x \sin 3x \, dx = \int_{0}^{\frac{\pi}{4}} \sin 2x \, dx + \frac{3}{2}.$$
 [2 marks]

Total 25 marks

02234020/CAPE 2012

GO ON TO THE NEXT PAGE

(iv) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \sin 2x \, dx$$
.

(i)

(iii)

SECTION B (Module 2)

Answer BOTH questions.

- (a) For a particular G.P., $u_6 = 486$ and $u_{11} = 118098$, where u_n is the n^{th} term.
 - (i) Calculate the first term, *a*, and the common ratio, *r*. [5 marks]
 - (ii) Hence, calculate *n* if $S_n = 177$ 146. [4 marks]

(b) The first four terms of a sequence are 1×3 , 2×4 , 3×5 , 4×6 .

- (i) Express, in terms of r, the r^{th} term, u_r , of the sequence. [2 marks]
- (ii) Prove, by mathematical induction, that

$$\sum_{r=1}^{n} u_r = \frac{1}{6} n \ (n+1) \ (2n+7), \ \forall n \in \mathbb{N}.$$
 [7 marks]

- (i) Use Maclaurin's Theorem to find the first three non-zero terms in the power series expansion of $\cos 2x$. [5 marks]
 - (ii) Hence, or otherwise, obtain the first two non-zero terms in the power series expansion of $\sin^2 x$. [2 marks]

Total 25 marks

3.

(c)

(i) Express
$$\begin{bmatrix} n \\ r \end{bmatrix}$$
 in terms of factorials. [1 mark]

(ii) Hence, show that
$$\binom{n}{r} = \binom{n}{n-r}$$
. [3 marks]

Find the coefficient of x^4 in $\left(x^2 - \frac{3}{x}\right)^8$. [5 marks]

(iv) Using the identity $(1 + x)^{2n} = (1 + x)^n (1 + x)^n$, show that

$$\binom{2n}{n} = c_0^2 + c_1^2 + c_3^2 + \ldots + c_{n-1}^2 + c_n^2, \text{ where } c_r = \binom{n}{r}.$$

[8 marks]

(b) Let
$$f(x) = 2x^3 + 3x^2 - 4x - 1 = 0$$
.

(i) Use the intermediate value theorem to determine whether the equation f(x) has any roots in the interval [0.2, 2]. [2 marks]

(ii) Using $x_1 = 0.6$ as a first approximation of a root T of f(x), execute FOUR iterations of the Newton-Raphson method to obtain a second approximation, x_2 , of T. [6 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

02234020/CAPE 2012

- 5 -

4.

(a)

SECTION C (Module 3)

Answer BOTH questions.

5. (a) How many 4-digit even numbers can be formed from the digits 1, 2, 3, 4, 6, 7, 8

- (i) if each digit appears at most once? [4 marks]
- (ii) if there is no restriction on the number of times a digit may appear? [3 marks]
- (b) A committee of five is to be formed from among six Jamaicans, two Tobagonians and three Guyanese.
 - (i) Find the probability that the committee consists entirely of Jamaicans.

[3 marks]

(ii) Find the number of ways in which the committee can be formed, given the following restriction: *There are as many Tobagonians on the committee as there are Guyanese.* [6 marks]

(c) Let A

(i)

Let **A** be the matrix $\begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

Find the matrix **B**, where $\mathbf{B} = \mathbf{A}^2 - 3\mathbf{A} - \mathbf{I}$. [3 marks]

(ii) Show that AB = -9I.

(iii) Hence, find the inverse, A^{-1} , of A.

(iv) Solve the system of linear equations

	($\begin{bmatrix} x \end{bmatrix}$)	$\left(3\right)$	
B	\$	У	=	-1	
	l	z)	2	

[3 marks]

[1 mark]

[2 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

(a) (i) Draw the points A and B on an Argand diagram,

6.

(b)

where
$$A = \frac{1+i}{1-i}$$
 and $B = \frac{\sqrt{2}}{1-i}$. [6 marks]
(ii) Hence, or otherwise, show that the argument of $\frac{(1+\sqrt{2}+i)}{1-i}$ is EXACTLY $\frac{3\pi}{8}$.
[5 marks]
(i) Find ALL complex numbers, *z*, such that $z^2 = i$. [3 marks]
(ii) Hence, find ALL complex roots of the equation

$$z^2 - (3+5i) z - (4-7i) = 0.$$
 [5 marks]

(c) Use de Moivre's theorem to show that

$$\cos 6 \theta = \cos^6 \theta - 15 \cos^4 \theta \sin^2 \theta + 15 \cos^2 \theta \sin^4 \theta - \sin^6 \theta.$$
 [6 marks]

Total 25 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.