CARIBBEAN
EXAMINATIONS
COUNCIL ADVANCED PROFICIENCY EXAMINATION
PURE MATHEMATICS
UNIT 2 - Paper 02
ANALYSIS, MATRICES AND COMPLEX NUMBERS
2 hours 30 minutes
25 MAY 2012 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.
Each section consists of 2 questions.
The maximum mark for each Module is 50 .
The maximum mark for this examination is 150 .
This examination consists of 7 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. DO NOT open this examination paper until instructed to do so.
2. Answer ALL questions from the THREE sections.
3. Write your solutions, with full working, in the answer booklet provided.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)
Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

> Copyright © 2011 Caribbean Examinations Council All rights reserved.

SECTION A (Module 1)

Answer BOTH questions.

1. (a) (i) Given the curve $y=x^{2} e^{x}$,
a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
b) find the x-coordinates of the points at which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
[2 marks]
c) find the x-coordinates of the points at which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$
[2 marks]
(ii) Hence, determine if the coordinates identified in (i) b) and c) above are at the maxima, minima or points of inflection of $y=x^{2} e^{x}$.
[7 marks]
(b) A curve is defined by the parametric equations $x=\sin ^{-1} \sqrt{t}, y=t^{2}-2 t$.

Find
(i) the gradient of a tangent to the curve at the point with parameter t [6 marks]
(ii) the equation of the tangent at the point where $t=\frac{1}{2}$.
2. (a) (i) Express

$$
\frac{x^{2}-3 x}{(x-1)\left(x^{2}+1\right)} \text { in partial fractions. }
$$

(ii) Hence, find

$$
\int \frac{x^{2}-3 x}{x^{3}-x^{2}+x-1} \mathrm{~d} x .
$$

(b) (i) Given that $\sin A \cos B-\cos A \sin B=\sin (A-B)$ show that

$$
\cos 3 x \sin x=\sin 3 x \cos x-\sin 2 x .
$$

(ii) If $I_{m}=\int \cos ^{m} x \sin 3 x \mathrm{~d} x$ and

$$
J_{m}=\int \cos ^{m} x \sin 2 x \mathrm{~d} x
$$

prove that $(m+3) I_{m}=m J_{m-1}-\cos ^{m} x \cos 3 x$.
(iii) Hence, by putting $m=1$, prove that

$$
\begin{aligned}
& 4 \int_{0}^{\frac{\pi}{4}} \cos x \sin 3 x \mathrm{~d} x=\int_{0}^{\frac{\pi}{4}} \sin 2 x \mathrm{~d} x+\frac{3}{2} . \\
& \text { (iv) Evaluate } \int_{0}^{\frac{\pi}{4}} \sin 2 x \mathrm{~d} x .
\end{aligned}
$$

SECTION B (Module 2)

Answer BOTH questions.

3. (a) For a particular G.P., $u_{6}=486$ and $u_{11}=118098$, where u_{n} is the $n^{\text {th }}$ term.
(i) Calculate the first term, a, and the common ratio, r.
(ii) Hence, calculate n if $S_{n}=177146$.
(b) The first four terms of a sequence are $1 \times 3,2 \times 4,3 \times 5,4 \times 6$.
(i) Express, in terms of r, the $r^{\text {th }}$ term, u_{r}, of the sequence.
(ii) Prove, by mathematical induction, that

$$
\sum_{r=1}^{n} u_{r}=\frac{1}{6} n(n+1)(2 n+7), \forall n \in \mathbf{N} .
$$

[7 marks]
(c) (i) Use Maclaurin's Theorem to find the first three non-zero terms in the power series expansion of $\cos 2 x$.
[5 marks]
(ii) Hence, or otherwise, obtain the first two non-zero terms in the power series expansion of $\sin ^{2} x$.
4. (a) (i) Express $\left[\begin{array}{l}n \\ r\end{array}\right]$ in terms of factorials.
[1 mark]
(ii) Hence, show that $\binom{n}{r}=\binom{n}{n-r}$.
[3 marks]
(iii) Find the coefficient of x^{4} in $\left(x^{2}-\frac{3}{x}\right)^{8}$.
(iv) Using the identity $(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}$, show that

$$
\left[\begin{array}{c}
2 n \\
n
\end{array}\right)=c_{0}^{2}+c_{1}^{2}+c_{3}^{2}+\ldots+c_{n-1}^{2}+c_{n}^{2}, \text { where } c_{r}=\left(\begin{array}{c}
n \\
r
\end{array}\right]
$$

[8 marks]
(b) Let $f(x)=2 x^{3}+3 x^{2}-4 x-1=0$.
(i) Use the intermediate value theorem to determine whether the equation $f(x)$ has any roots in the interval [0.2, 2].
[2 marks]
(ii) Using $x_{1}=0.6$ as a first approximation of a root \mathbf{T} of $f(x)$, execute FOUR iterations of the Newton-Raphson method to obtain a second approximation, x_{2}, of \mathbf{T}.
[6 marks]

Total 25 marks

SECTION C (Module 3)

Answer BOTH questions.

5. (a) How many 4-digit even numbers can be formed from the digits 1, 2, 3, 4, 6, 7, 8
(i) if each digit appears at most once?
(ii) if there is no restriction on the number of times a digit may appear? [3 marks]
(b) A committee of five is to be formed from among six Jamaicans, two Tobagonians and three Guyanese.
(i) Find the probability that the committee consists entirely of Jamaicans.
[3 marks]
(ii) Find the number of ways in which the committee can be formed, given the following restriction: There are as many Tobagonians on the committee as there are Guyanese.
(c) Let \mathbf{A} be the matrix $\left(\begin{array}{rrr}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$.
(i) Find the matrix \mathbf{B}, where $\mathbf{B}=\mathbf{A}^{2}-3 \mathbf{A}-\mathbf{I}$.
(ii) Show that $\mathbf{A B}=-9 \mathbf{I}$.
(iii) Hence, find the inverse, \mathbf{A}^{-1}, of \mathbf{A}.
(iv) Solve the system of linear equations

$$
\mathbf{B}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right]
$$

6.

(a) (i) Draw the points A and B on an Argand diagram,

$$
\text { where } \mathrm{A}=\frac{1+i}{1-i} \text { and } \mathrm{B}=\frac{\sqrt{2}}{1-i} \text {. }
$$

(ii) Hence, or otherwise, show that the argument of $\frac{(1+\sqrt{2}+i)}{1-i}$ is EXACTLY $\frac{3 \pi}{8}$.
(b) (i) Find ALL complex numbers, z, such that $z^{2}=i$.
(ii) Hence, find ALL complex roots of the equation

$$
z^{2}-(3+5 i) z-(4-7 i)=0
$$

(c) Use de Moivre's theorem to show that

$$
\cos 6 \theta=\cos ^{6} \theta-15 \cos ^{4} \theta \sin ^{2} \theta+15 \cos ^{2} \theta \sin ^{4} \theta-\sin ^{6} \theta
$$

[6 marks]
Total 25 marks

END OF TEST

