1 (a) Given that

$$
\frac{3+\sin ^{2} \theta}{\cos \theta-2}=3 \cos \theta
$$

show that

$$
\begin{equation*}
\cos \theta=-\frac{1}{2} \tag{4}
\end{equation*}
$$

(b) Hence solve the equation

$$
\frac{3+\sin ^{2} 3 x}{\cos 3 x-2}=3 \cos 3 x
$$

giving all solutions in degrees in the interval $0^{\circ}<x<180^{\circ}$.
2.

$$
f(x)=12 \cos x-4 \sin x
$$

Given that $\mathrm{f}(x)=R \cos (x+\alpha)$, where $R \geqslant 0$ and $0 \leqslant \alpha \leqslant 90^{\circ}$,
(a) find the value of R and the value of α.
(b) Hence solve the equation

$$
12 \cos x-4 \sin x=7
$$

for $0 \leqslant x<360^{\circ}$, giving your answers to one decimal place.
(c) (i) Write down the minimum value of $12 \cos x-4 \sin x$.
(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.
3. A curve has parametric equations

$$
x=\tan ^{2} t, \quad y=\sin t, \quad 0<t<\frac{\pi}{2} .
$$

Find a cartesian equation of the curve in the form $y^{2}=\mathrm{f}(x)$.
4. The line l_{1} has vector equation

$$
\mathbf{r}=8 \mathbf{i}+12 \mathbf{j}+14 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k}),
$$

where λ is a parameter.
The point A has coordinates $(4,8, a)$, where a is a constant. The point B has coordinates $(b, 13,13)$, where b is a constant. Points A and B lie on the line l_{1}.
(a) Find the values of a and b.

Given that the point O is the origin, and that the point P lies on l_{1} such that $O P$ is perpendicular to l_{1},
(b) find the coordinates of P.
(c) Hence find the distance $O P$, giving your answer as a simplified surd.

The diagram shows a circle, centre O, radius 8 cm . The points P and Q lie on the circle. The lines $P T$ and $Q T$ are tangents to the circle and angle $P O Q=\frac{3 \pi}{4}$ radians.
(i) Find the length of $P T$.
(ii) Find the area of the shaded region.
(iii) Find the perimeter of the shaded region.
6. The points A and B have coordinates $(-2,11)$ and $(8,1)$ respectively.

Given that $A B$ is a diameter of the circle C,
(a) show that the centre of C has coordinates $(3,6)$,
(b) find an equation for C.
(c) Verify that the point $(10,7)$ lies on C.
(d) Find an equation of the tangent to C at the point $(10,7)$, giving your answer in the form $y=m x+c$, where m and c are constants.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{5}{*}{1(a)} \& $$
\begin{aligned}
& \frac{3+\sin ^{2} \theta}{\cos \theta-2}=3 \cos \theta \\
& \Rightarrow \frac{3+\left(1-\cos ^{2} \theta\right)}{\cos \theta-2}=3 \cos \theta
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \frac{4-\cos ^{2} \theta}{\cos \theta-2}=3 \cos \theta \\
& \Rightarrow \frac{(2-\cos \theta)(2+\cos \theta)}{\cos \theta-2}=3 \cos \theta
\end{aligned}
$$ \& M1

m1 \& \& | $\cos ^{2} \theta+\sin ^{2} \theta=1$ stated or used [If cand starts with $\cos \theta=-1 / 2$ and gets $\sin ^{2} \theta=3 / 4$ without explicitly finding value for θ and verifies $1^{\text {st }}$ equation is true, award M1moA0] |
| :--- |
| Difference of two squares |
| or division (PI by next line) | \\

\hline \& | $\begin{aligned} & \Rightarrow-1(2+\cos \theta)=3 \cos \theta \\ & \Rightarrow-2=4 \cos \theta \Rightarrow \cos \theta=-\frac{1}{2} \end{aligned}$ |
| :--- |
| Alternative for (a) | \& | A1 |
| :--- |
| A1 | \& 4 \& CSO AG \\

\hline \& $$
\begin{aligned}
& 3+1-\cos ^{2} \theta=3 \cos ^{2} \theta-6 \cos \theta \\
& (4 \cos \theta+2)(\cos \theta-2)=0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { (M1) } \\
& \text { (m1) }
\end{aligned}
$$

\] \& \& | $\cos ^{2} \theta+\sin ^{2} \theta=1$ |
| :--- |
| Factorising or formula | \\

\hline \& $$
\cos \theta-2 \neq 0
$$ \& (A1) \& \& Indicates rejection of $\cos \theta=2$ \\

\hline \& $$
\Rightarrow 4 \cos \theta=-2 \Rightarrow \cos \theta=-\frac{1}{2}
$$ \& (A1) \& \& AG Be convinced \\

\hline \multirow[t]{2}{*}{(b)} \& \[
$$
\begin{aligned}
& \theta=3 x \Rightarrow \cos 3 x=-\frac{1}{2} \\
& \cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \\
& 3 x=120^{\circ}, 240^{\circ}, 480^{\circ}, \ldots
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 | \& \& | Uses part (a) to reach either $\cos 3 x=-0.5$ or $\cos 3 x=0.5$ |
| :--- |
| Or $\cos ^{-1}(0.5)=60^{\circ}$ Condone radians here | \\

\hline \& $x=40^{\circ}, 80^{\circ}, 160^{\circ}$ \& A2,1,0 \& 4 \& | A1 for at least two correct. |
| :--- |
| If >3 solutions in the interval $0^{\circ}<x<180^{\circ}$, deduct 1 mark from any A marks for each extra solution. |
| Deduct 1 mark from any A marks if answers in radians. Ignore extra values outside the given interval. | \\

\hline \& Total \& \& 8 \& \\
\hline \& \& \& \& \\
\hline
\end{tabular}

4. (a)	$\begin{equation*} \lambda=-4 \rightarrow a=18, \quad \mu=1 \rightarrow b=9 \tag{3} \end{equation*}$			M1 A1, A1
(b)	$\left(\begin{array}{l} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ 1 \\ -1 \end{array}\right)=0$			M1
	$\therefore 8+\lambda+12+\lambda-14+\lambda=0$			A1
	Solves to obtain $\lambda \quad(\lambda=-2)$			dM1
	Then substitutes value for λ to give P at the point ($6,10,16$) (any form)			M1, A1 (5)
(c)	$\begin{aligned} O P & =\sqrt{36+100+256} \\ & (=\sqrt{392})=14 \sqrt{2} \end{aligned}$			M1
				A1 cao
$5 \begin{array}{rr}\text { (i) } \\ & \\ & \\ & \\ & \\ \\ & \\ & \\ \text { (iii) }\end{array}$	$\frac{P T}{8}=\tan \left(\frac{3 \pi}{8}\right) \text { oe }$		$\frac{P T}{\sin \frac{3 \pi}{8}}=\frac{8}{\sin \frac{\pi}{8}}$	
	$P T=19.3$	A1	awrt 19.3	
	$\frac{1}{2} \times 8^{2} \times \frac{3 \pi}{4}$ oe (75.4)	M1	$\text { or } \frac{1}{2} \times 8^{2} \times \frac{3 \pi}{8}$	
	$8 \tan \left(\frac{3 \pi}{8}\right) \times 8-$ their sector oe $\left(=154.5-{ }^{\prime} 75.4^{\prime}\right)$	M1	$8 \times$ their PT-their sector	
	79.1	A1	awrt 79.1	
(iii)	$\begin{aligned} & 8\left(\frac{3 \pi}{4}\right) \text { oe }(18.8) \\ & {\left[6 \pi+16 \tan \left(\frac{3 \pi}{8}\right)\right]=57.5} \end{aligned}$	M1	Accept 57.4 to 57.5	
		A1		

Question Number	Scheme	Marks
6. $\begin{array}{ll} \\ & \text { (a) } \\ & \text { (b) }\end{array}$	$\begin{array}{lr} C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right)=C(3,6) \text { AG } & \begin{array}{r} \text { Correct method (no errors) for finding } \\ \text { the mid-point of } A B \text { giving }(3,6) \end{array} \\ (8-3)^{2}+(1-6)^{2} \text { or } \sqrt{(8-3)^{2}+(1-6)^{2}} \text { or } & \begin{array}{r} \text { Applies distance formula in } \\ \text { order to find the radius. } \\ \text { Correct application of } \\ \text { formula. } \end{array} \\ (-2-3)^{2}+(11-6)^{2} \text { or } \sqrt{(-2-3)^{2}+(11-6)^{2}} & (x \pm 3)^{2}+(y \pm 6)^{2}=k, \\ k \text { is a positive value. } \end{array} \quad \begin{array}{rr} & (x-3)^{2}+(y-6)^{2}=50\left(\text { or }(\sqrt{50})^{2} \text { or }(5 \sqrt{2})^{2}\right) \end{array} \begin{array}{r} \left.(y-6)^{2}=50 \text { (Not } 7.07^{2}\right) \end{array}$	(1) M1 A1 M1 A1 (4)
(c)	\{For (10, 7), \} $\quad \underline{(10-3)^{2}+(7-6)^{2}=50}, \quad$ \{so the point lies on	(1)
(d)	$\begin{array}{lr} \hline \text { Gradient of radius }\}=\frac{7-6}{10-3} \text { or } \frac{1}{7} & \text { This must be seen in part }(\mathrm{d}) . \\ \text { Gradient of tangent }=\frac{-7}{1} & \text { Using a perpendicular gradient method. } \\ y-7=-7(x-10) & y-7=(\text { their gradient })(x-10) \\ y=-7 x+77 & y=-7 x+77 \text { or } y=77-7 x \end{array}$	B1 M1 M1 A1 cao (4) [10]
	Notes	
(a)	Alternative method: $C\left(-2+\frac{8--2}{2}, 11+\frac{1-11}{2}\right)$ or $C\left(8+\frac{-2-8}{2}, 1+\frac{11-1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow $1^{\text {st }} \mathrm{M} 1$ generously for $\frac{(-2-8)^{2}+(11-1)^{2}}{2}$ Award $1^{\text {st }}$ M1A1 for $\frac{(-2-8)^{2}+(11-1)^{2}}{4}$ or $\frac{\sqrt{(-2-8)^{2}+(11-1)^{2}}}{2}$. Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^{2}+(7-6)^{2}=50$ with no errors. Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify (10,7) lies on C without a correct C. Also a candidate could either substitute $x=10$ in C to find $y=7$ or substitute $y=7$ in C to find $x=10$.	

