1 (a) Given that

$$\frac{3+\sin^2\theta}{\cos\theta-2}=3\,\cos\theta$$

show that

$$\cos\theta = -\frac{1}{2} \tag{4}$$

(b) Hence solve the equation

$$\frac{3 + \sin^2 3x}{\cos 3x - 2} = 3\cos 3x$$

giving all solutions in degrees in the interval $0^{\circ} < x < 180^{\circ}$. (4)

2.

$$f(x) = 12\cos x - 4\sin x.$$

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^\circ$,

- (a) find the value of *R* and the value of α .
- (b) Hence solve the equation

$$12\cos x - 4\sin x = 7$$

for $0 \le x < 360^\circ$, giving your answers to one decimal place.

(5)

(4)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

3. A curve has parametric equations

$$x = \tan^2 t$$
, $y = \sin t$, $0 < t < \frac{\pi}{2}$.

Find a cartesian equation of the curve in the form $y^2 = f(x)$.

(4)

4. The line l_1 has vector equation

$$\mathbf{r} = 8\mathbf{i} + 12\mathbf{j} + 14\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

where λ is a parameter.

The point *A* has coordinates (4, 8, *a*), where *a* is a constant. The point *B* has coordinates (*b*, 13, 13), where *b* is a constant. Points *A* and *B* lie on the line l_1 .

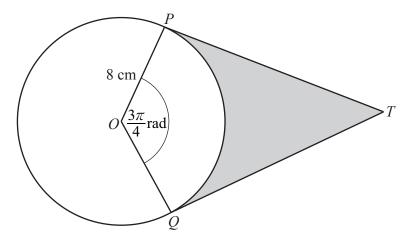
(a) Find the values of *a* and *b*.

(3)

Given that the point O is the origin, and that the point P lies on l_1 such that OP is perpendicular to l_1 ,

- (b) find the coordinates of *P*.
- (5)
- (c) Hence find the distance *OP*, giving your answer as a simplified surd.

(2)



The diagram shows a circle, centre *O*, radius 8 cm. The points *P* and *Q* lie on the circle. The lines *PT* and *QT* are tangents to the circle and angle $POQ = \frac{3\pi}{4}$ radians.

(i)	Find the length of <i>PT</i> .	[2]
(ii)	Find the area of the shaded region.	[3]
(iii)	Find the perimeter of the shaded region.	[2]

6. The points A and B have coordinates (-2, 11) and (8, 1) respectively.

Given that AB is a diameter of the circle C,

- (a) show that the centre of C has coordinates (3, 6),
- (b) find an equation for C, (4)
- (c) Verify that the point (10, 7) lies on C_{\bullet}
- (d) Find an equation of the tangent to *C* at the point (10, 7), giving your answer in the form y = mx + c, where *m* and *c* are constants.

(4)

(1)

(1)

Q	Solution	Marks	Total	Comments
1(a)	$\frac{3+\sin^2\theta}{\cos\theta-2}=3\cos\theta$			
	$\Rightarrow \frac{3 + (1 - \cos^2 \theta)}{\cos \theta - 2} = 3\cos \theta$	M1		$\cos^2\theta + \sin^2\theta = 1$ stated or used [If cand
	$\cos \theta = 2$			starts with $\cos \theta = -\frac{1}{2}$ and gets $\sin^2 \theta = \frac{3}{4}$ without explicitly finding value for θ and
				verifies 1 st equation is true, award
				M1moA0]
	$\Rightarrow \frac{4 - \cos^2 \theta}{\cos \theta - 2} = 3 \cos \theta$			
	$\Rightarrow \frac{(2 - \cos \theta)(2 + \cos \theta)}{\cos \theta - 2} = 3\cos \theta$	m1		Difference of two squares
				or division (PI by next line)
	$\Rightarrow -1(2 + \cos \theta) = 3\cos \theta$	A1		
	$\Rightarrow -2 = 4\cos\theta \Rightarrow \cos\theta = -\frac{1}{2}$	A1	4	CSO AG
	Alternative for (a)			
	$3+1-\cos^2\theta=3\cos^2\theta-6\cos\theta$	(M1)		$\cos^2\theta + \sin^2\theta = 1$
	$(4\cos\theta + 2)(\cos\theta - 2) = 0$	(m1)		Factorising or formula
	$\cos\theta - 2 \neq 0$	(A1)		Indicates rejection of $\cos\theta = 2$
	$\Rightarrow 4\cos\theta = -2 \Rightarrow \cos\theta = -\frac{1}{2}$	(A1)		AG Be convinced
(b)	$\theta = 3x \Longrightarrow \cos 3x = -\frac{1}{2}$	M1		Uses part (a) to reach either $\cos 3x = -0.5$ or $\cos 3x = 0.5$
	$\cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ}$	m1		Or $\cos^{-1}(0.5) = 60^{\circ}$ Condone radians here
	$3x = 120^{\circ}, 240^{\circ}, 480^{\circ}, \dots$			
	$x = 40^{\circ}, 80^{\circ}, 160^{\circ}$	A2,1,0	4	A1 for at least two correct.
				If >3 solutions in the interval $0^{\circ} < x < 180^{\circ}$, deduct 1 mark from any A marks for each extra solution.
				Deduct 1 mark from any A marks if answers in radians. Ignore extra values outside the given interval.
	Total		8	

r		ſ			
2.	(a) $R \cos \alpha = 12, R \sin \alpha = 4$				
	$R = \sqrt{(12^2 + 4^2)} = \sqrt{160}$ Accept if just written down, awrt 12.6	M1 A1			
	$\tan \alpha = \frac{4}{12}, \implies \alpha \approx 18.43^{\circ}$ awrt 18.4°	M1, A1(4)			
	(b) $\cos(x + \text{ their } \alpha) = \frac{7}{\text{their } R} (\approx 0.5534)$	M1			
	$x + \text{their } \alpha = 56.4^{\circ}$ awrt 56^{\circ} $= \dots, 303.6^{\circ}$ $360^{\circ} - \text{their principal value}$ $x = 38.0^{\circ}, 285.2^{\circ}$ Ignore solutions out of rangeIf answers given to more than 1 dp, penalise first time then accept awrt above.	A1 M1 A1, A1 (5)			
	(c)(i) minimum value is $-\sqrt{160}$ ft their R				
	(ii) $\cos(x + \text{ their } \alpha) = -1$	M1			
	$x \approx 161.57^{\circ}$ cao	A1 (3) [12]			
3. Way 1	$x = \tan^2 t = \frac{\sin^2 t}{\cos^2 t} \qquad y = \sin t$				
way 1	$x = \frac{\sin^2 t}{1 - \sin^2 t}$ Uses $\cos^2 t = 1 - \sin^2 t$	<i>t</i> M1			
	$x = \frac{y^2}{1 - y^2}$ Eliminates 't' to write an equation involving x and $x(1 - y^2) = y^2 \implies x - xy^2 = y^2$				
	$x(1-y^2) = y^2 \implies x - xy^2 = y^2$				
	$x = y^2 + xy^2 \implies x = y^2(1+x)$ Rearranging and factorising with attempt to make y^2 the subjection	d d M 1			
	$y^2 = \frac{x}{1+x} \qquad \qquad \frac{x}{1+x}$	$\frac{1}{x}$ A1			
Aliter 3 Way 2	$1 + \cot^2 t = \csc^2 t \qquad $				
Way 2	$= \frac{1}{\sin^2 t} \qquad \qquad \cos ec^2 t = \frac{1}{\sin^2 t}$	-t M1 implied			
	Hence, $1 + \frac{1}{x} = \frac{1}{y^2}$ Eliminates 't' to write an equation involving x and				
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$ $1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	\overline{x} A1			

4. (a)	$\lambda = -4 \rightarrow a = 18, \qquad \mu = 1 \rightarrow b = 9$			M1 A1,	
(b)	$ \begin{pmatrix} 8+\lambda\\12+\lambda\\14-\lambda \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = 0 $				(3)
	$\therefore 8 + \lambda + 12 + \lambda - 14 + \lambda = 0$			A1	
	Solves to obtain λ ($\lambda = -2$)				
	Then substitutes value for λ to give P at the point (6, 10, 16) (any form)				(5)
(c)	$OP = \sqrt{36 + 100 + 256}$				
	$(=\sqrt{392}) = 14\sqrt{2}$				
5 (i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right)$ oe	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$		
	<i>PT</i> =19.3	A1	awrt 19.3		
(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$		
	$8 \tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector } \text{ oe} (=154.5-`75.4')$	M1	$8 \times their PT - their sector$		
I	79.1	A1	awrt 79.1		
(iii)	$8\left(\frac{3\pi}{4}\right)$ oe (18.8)	M1			
	$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5		
			I		

Question Number	Scheme				
6.					
	$C\left(\frac{-2+8}{2},\frac{11+1}{2}\right) = C(3,6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving (3, 6)	B1*			
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or $(-2-3)^2 + (11-6)^2$ or $\sqrt{(-2-3)^2 + (11-6)^2}$ Applies distance formula in order to find the radius. Correct application of formula.	(1) M1			
	$(-2-3) + (11-6)$ or $\sqrt{(-2-3)} + (11-6)$ formula. $(x \pm 3)^2 + (y \pm 6)^2 = k$,	A1			
	$(x-3)^{2} + (y-6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right) \qquad \qquad (x-3)^{2} + (y-6)^{2} = 50 (\text{Not } 7.07^{2})$ $(x-3)^{2} + (y-6)^{2} = 50 (\text{Not } 7.07^{2})$	M1 A1			
		(4)			
(c)	{For (10, 7), } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u> (1)			
	7-6 1	(-)			
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1			
	Gradient of tangent $=\frac{-7}{1}$ Using a perpendicular gradient method.	M1			
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1			
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao			
		(4) [10]			
	Notes				
(a)	$\begin{pmatrix} 82 & 1 - 11 \end{pmatrix}$ $\begin{pmatrix} -2 - 8 & 11 - 1 \end{pmatrix}$				
(b)	You need to be convinced that the candidate is attempting to work out the radius and r	not the			
	diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for				
	$(-2-8)^2 + (11-1)^2$				
	2				
	Award 1 st M1A1 for $\frac{(-2-8)^2 + (11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2 + (11-1)^2}}{2}$.				
	Correct answer in (b) with no working scores full marks.				
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.				
	Also to gain this mark candidates need to have the correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on <i>C</i> without a correct Also a candidate could either substitute $x = 10$ in <i>C</i> to find $y = 7$ or substitute $y = 7$ in find $x = 10$.	ect C.			