HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2015 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 1 TEST 1 1 hour 20 minutes

This test paper consists of 2 printed pages. This paper consists of 9 questions. The maximum mark for this test is 53.

INSTRUCTIONS TO CANDIDATES

- (i) Write **in ink**
- (ii) Write your name clearly on each sheet of paper used
- (iii) Answer ALL questions
- (iv) Number your questions identically as they appear on the question paper and do **NOT** write your solutions to different questions beside each other
- (v) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae

3) Evaluate $\sum_{r=5}^{200} (3r-2)$.

- (b) Scientific calculator (non-programmable, non-graphical)
- 1) Given that p and q are propositions, use the algebra of propositions to simplify fully $(p \land q) \lor (p \land \sim q)$

[3] **Total 3 marks**

[5]

2) Express
$$\frac{5\sqrt{2}+1}{2-\sqrt{2}}$$
 in the form $p + q\sqrt{2}$ where p and q are real numbers.

Total 5 marks [4] Total 4 marks

- 4) Prove by mathematical induction that $3^{2n} 1$ is divisible by 8 for all $n \in \mathbb{Z}^+$. [6] Total 6 marks
- 5) (i) The cubic polynomial $2x^3 + 5x^2 + px 6$, where p is a constant is denoted by f(x).

Given that (x + 2) is a factor of f(x), find the value of p.[2](ii) When p has this value, find all the roots of the equation f(x) = 0.[6]Total 8 marks

 6) The population of a village at the <u>beginning</u> of the year 2005 was 410. The population increased so that, after a period of <i>n</i> years, the new population was 410(1.06)ⁿ. Calculate estimates of (i) the population at the beginning of 2015 (ii) the year in which the population is expected to first reached 900. 	[2] [5] Total 7 marks
7) The function f is given by $f: x \to e^{2x}$, $x \in \mathbf{R}$ and the function g is given by $g: x \to \ln 2x$, $x \in \mathbf{R}$, $x > 0$.	
(i) Find an expression in terms of x for $f^{-1}(x)$.	[4]
 (ii) State for f⁻¹(x) (a) the domain (b) the range. (iii) Determine fg(x), simplifying your answer. 	[1] [1] [3] Total 9 marks
8) Find the range of values of $x \in \mathbf{R}$ for which $\frac{3x-2}{x-3} \le 2$, $x \ne 3$	[5]

```
Total 5 marks
```

9) Solve for $x, x^2 - 4 x + 4 = 0$.	[6]
	Total 6 marks

End of Test

HARRISON COLLEGE – BARBADOS SOLUTIONS – CAPE 2015: UNIT 1 TEST 1

1) $(p \land q) \lor (p$ = $p \land (q \lor$ = $p \land 1$ = p	 ∧ ~ q) ~ q) distributive complement identity 	[1 mark] [1 mark] [1 mark]
2) $\frac{5\sqrt{2}+1}{2-\sqrt{2}}$		
$=\frac{(5\sqrt{2}+1)}{(2-\sqrt{2})}$	$(\frac{1}{2}) \times \frac{(2+\sqrt{2})}{(2+\sqrt{2})}$	[1 mark]
	$\frac{10+2+\sqrt{2}}{4-2}$	[1 mark]
$=\frac{12\sqrt{2}+1}{2}$	2√2)	[1 mark]
$=6+6\sqrt{2}$		[1 + 1 marks]

^

$$\begin{aligned} \mathbf{3}) & \sum_{r=5}^{200} (3r-2). \\ &= \sum_{r=1}^{200} (3r-2) - \sum_{r=1}^{4} (3r-2) \\ &= 3[\sum_{r=1}^{200} r - \sum_{1}^{200} 2] - 3[\sum_{r=1}^{4} r - \sum_{1}^{4} 2] \\ &= 3\left[\frac{1}{2}(200)(200+1) - (2 \times 200)\right] - 3\left[\frac{1}{2}(4)(4+1) - (2 \times 4)\right] \\ &= [59\ 900] - [22] \\ &= 59\ 878 \end{aligned}$$
[1 mark]

4) Let P_n be the statement " $3^{2n} - 1$ is divisible by $8 \forall n \in \mathbb{Z}^+$." <u>Basic Step</u> – To Prove P_n is true for n = 1 i.e. To Prove P_1 is true

When n = 1; $P_1 = 3^2 - 1 = 8$ which is divisible by 8. $\therefore P_1$ is true. [1 mark]

<u>Inductive Step</u> – Assume P_n is true for n = k i.e. Assume P_k is true i.e. $P_k \equiv 3^{2k} - 1$ is divisible by $8 \forall k \in \mathbb{Z}^+$. [1 mark]

We are required to show that $P_{k+1} \equiv 3^{2(k+1)} - 1 = 3^{2k+2} - 1$ is divisible by 8.

Now
$$P_{k+1} - P_k = [3^{2k+2} - 1] - [3^{2k} - 1]$$
 [1 mark]
= $3^{2k+2} - 3^{2k}$
= $3^{2k} [3^2 - 1]$
= $3^{2k} [8]$ [1 mark]

 $\therefore P_{k+1} = P_k + 3^{2k} [8]$ $P_k \text{ is divisible by 8 by assumption and } 3^{2k} [8] \text{ is also divisible by 8}$ $\therefore P_{k+1} \text{ is divisible by 8.}$ [1 mark]

Conclusion

 $P_1 \Rightarrow P_2$ $P_2 \Rightarrow P_3$ $P_{n-1} \Rightarrow P_n$ Hence, by MI, P_n is true $\forall n \in Z^+$

5) (a) (i) Let
$$f(x) = 2x^3 + 5x^2 + px - 6$$

 $f(-2) = 0$
 $2(-2)^3 + 5(-2)^2 + p(-2) - 6 = 0$ [1 mark]
 $-2 = 2p$
 $-1 = p$ [1 mark]

$$f(x) = 2x^{3} + 5x^{2} - x - 6$$
[1 mark] Quotient
$$(x + 2) \boxed{2x^{3} + 5x^{2} - x - 6}$$
Subtract
$$2x^{3} + 4x^{2} \downarrow \downarrow \downarrow \downarrow \\ x^{2} - x$$
Subtract
$$x^{2} + 2x \downarrow \downarrow \\ -3x - 6$$
Subtract
$$-3x - 6$$
Subtract
$$-3x - 6$$
Subtract
$$-3x - 6$$

$$(1 mark]$$

$$x = -2, -\frac{3}{2}, 1$$
[1 mark]

6) (i) Year 2010 i.e.
$$n = 0, P = 410$$

Let
$$P(n) = 410 (1.06)^n$$

$$P(10) = 410 (1.06)^{10}$$
[1 mark]
= 734.2 persons
accept 734 [1 mark]

[1 mark]

(ii)
$$P(n) = 410 (1.06)^n$$

 $900 = 410 (1.06)^n$
 $\frac{900}{410} = (1.06)^n$ [1 mark]
 $\ln \left(\frac{900}{410}\right) = \ln [(1.06)^n]$ [1 mark]

$$\ln\left(\frac{900}{410}\right) = n\ln(1.06)$$
 [1 mark]

$$\frac{\ln \left(\frac{900}{410}\right)}{\ln (1.06)} = n$$
13.5 years = n
[1 mark]
Beginning of year 2005 + 13.5 years = 2018
[1 mark]

7) (i)
$$f: x \to e^{2x}, x \in R; g: x \to \ln 2x, x \in R, x > 0$$

Let $y = f(x)$

Let
$$y = f(x)$$

 $y = e^{2x}$
 $x = e^{2y}$ [1 mark]
 $\ln x = \ln (e^{2y})$ [1 mark]
 $\ln x = 2y$ [1 mark]
 $\frac{1}{2} \ln x = y$
 $\frac{1}{2} \ln x = f^{-1}(x)$ [1 mark]

(ii) (a) Domain of
$$f^{-1}$$
, $x \in \mathbf{R}$, $x > 0$ [1 mark]
(b) Range of f^{-1} , $f(x) \in \mathbf{R}$ [1 mark]

(iii)
$$fg(x) = f(\ln 2x)$$
 [1 mark]
= $e^{2\ln 2x}$
= $e^{\ln (2x)^2}$ [1 mark]
= $4x^2$ [1 mark]

8)
$$\frac{3x-2}{x-3} \le 2, x \ne 3$$

 $\frac{3x-2}{x-3} \times (x-3)^2 \le 2 \times (x-3)^2$ [1 mark]
 $(3x-2)(x-3) \le 2x^2 - 12x + 18$ [1 mark]
 $x^2 + x - 12 \le 0$ [1 mark]
 $(x+4)(x-3) \le 0$
 $-4 \le x < 3$ [1 + 1 marks]

9) Solve for
$$x$$
, $x^2 - 4|x| + 4 = 0$.

$x^2 - 4(x) + 4 = 0$	[1 mark]
$\left(x-2\right)^2=0$	[1 mark]
x = 2 twice	[1 mark]

OR

$x^2 - 4(-x) + 4 = 0$	[1 mark]
$x^2 + 4x + 4 = 0$	
$\left(x+2\right)^2=0$	[1 mark]
x = -2 twice	[1 mark]