HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2018
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 1
 1 hour 20 minutes

This examination paper consists of 2 pages.
This paper consists of 6 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. The complex number $7+3 i$ is denoted by z.

Find

$$
\begin{array}{cl}
\text { i. } & |z| \\
\text { ii. } & \arg z \\
\text { iii. } & \frac{z}{4-i} \tag{5}
\end{array}
$$

Total 7 marks
2. The loci C_{1} and C_{2} are given by $\arg (z-2-2 i)=\frac{1}{4} \pi$ and $|z|=|z-10|$ respectively
i. Sketch on a single Argand diagram the loci C_{1} and C_{2}.
ii. Indicate, by shading, the region of the Argand diagram for which

$$
\begin{equation*}
0 \leq \arg (z-2-2 i) \leq \frac{1}{4} \pi \text { and }|z| \geq|z-10| \tag{2}
\end{equation*}
$$

Total 5 marks
3. Given that

$$
\begin{equation*}
x=\sec ^{2} 3 y, \quad 0<y<\frac{\pi}{6} \tag{4}
\end{equation*}
$$

a) Find $\frac{d x}{d y}$ in terms of y.
b) Hence show that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{6 x(x-1)^{\frac{1}{2}}} \tag{4}
\end{equation*}
$$

Total 8 marks
4. Given that

$$
\begin{equation*}
f(x)=\frac{25}{(3+2 x)^{2}(1-x)},|x|<1 \tag{6}
\end{equation*}
$$

a) Express $f(x)$ as a sum of partial fractions
b) Hence find $\int f(x) d x$
5. The curve

$$
y=2 x-x \ln x, \text { where } x>0
$$

shown below, crosses the x-axis at A , and has a turning point at B . The point C on the curve has x-coordinate 1 . Lines CD and BE are drawn parallel to the y-axis.

i. Find the x-coordinate of A, giving your answer in terms of e.
ii. Find the exact coordinates of B.
iii. Show that the tangents at A and C are perpendicular to each other.
iv. Using integration by parts, show that

$$
\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c
$$

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines CD and BE.
6. Use the substitution $u=2^{x}$ to find the exact value of

$$
\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} d x
$$

