HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2018
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT PREVIEW
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 20 minutes

This examination paper consists of 3 pages.
This paper consists of 6 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (a) The sum of an infinite geometric sequence is $13 \frac{1}{2}$ and the sum of the first three terms is 13. Find the first term. $[a=9]$
(b) An arithmetic series, with first term 12 and common difference d, consists of 23 terms. Given that the sum of the last 3 terms is 5 times the sum of the first 3 terms.

Find:

$$
\begin{equation*}
\text { (i) the value of } d . \quad[\mathrm{d}=3] \tag{3}
\end{equation*}
$$

(ii) the sum of the first 17 terms. [612]
2. The sequence $u_{1}, u_{2}, u_{3} \ldots$ is defined by $u_{1}=3$ and $u_{n+1}=3 u_{n}-2$.
(i) Find u_{2} and u_{3} and verify that $\frac{1}{2}\left(u_{4}-1\right)=27 \quad[7,19]$
(ii) Hence suggest an expression in terms of n for $u_{n} \cdot\left[2\left(3^{n-1}\right)+1\right]$
(iii) Use induction to prove that your answer to part (ii) is correct.
3. (i) Show that $\frac{1}{2 r-3}-\frac{1}{2 r+1}=\frac{4}{4 r^{2}-4 r-3}$.
(ii) Hence, find an expression, in terms of n, for

$$
\sum_{r=2}^{n} \frac{4}{4 r^{2}-4 r-3}
$$

$$
\begin{equation*}
\frac{4}{3}-\frac{4 n}{(2 n-1)(2 n+1)} \tag{6}
\end{equation*}
$$

(ii) Determine

$$
\sum_{r=2}^{\infty} \frac{4}{4 r^{2}-4 r-3}
$$

$$
\begin{equation*}
\left[\frac{4}{3}\right] \tag{1}
\end{equation*}
$$

Total 9 marks
4. The function f is defined by $f(x)=\ln \left(\frac{1}{1-x}\right)$
(a) Write down the value of the constant term in the Maclaurin series for $f(x)$. [0]
(b) Find the first three derivatives of $f(x)$ and hence show that the Maclaurin series for $f(x)$ up to and including the x^{3} term is $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}$.
(c) Use this series to find an approximate value for $\ln 2 . \quad\left[\frac{2}{3}\right]$

Total 10 marks
5. (a) The coefficient of x in the expansion of $\left(x+\frac{1}{a x^{2}}\right)^{7}$ is $\frac{7}{3}$.

Find the possible values of $a . \quad[\pm 3]$
(b) (i) Expand $(2+x)^{-2}$ in ascending powers of x up to and including the term in x^{3}.

$$
\begin{equation*}
\frac{1}{4}-\frac{x}{4}+\frac{3 x^{2}}{16}-\frac{1}{8} x^{3} \tag{4}
\end{equation*}
$$

(ii) State the values of x for which the expansion is valid. $\quad[-2<x<2]$
(iii) Hence find the coefficient of x^{3} in the expansion of $\frac{\left(1+x^{2}\right)}{(2+x)^{2}} \cdot\left[-\frac{3}{8}\right]$
6.

The diagram shows the curve with equation $y=x e^{-x}+1$. The curve crosses the $x-$ axis at $\quad x=\alpha$.
(i) Show that the equation $x e^{-x}+1=0$ has a root α in the interval $[-1,0]$.
(ii) Use differentiation to show that the x -coordinate of the stationary point is 1 . α is to be found using the Newton-Raphson method, with $f(x)=x e^{-x}+1$.
(iii) Explain why this method will not converge to α if an initial approximation x_{1} is chosen such that $x_{1}>1$.
(iv) Use this method, with a first approximation $x_{1}=0$, to find the next three approximations x_{2}, x_{3} and x_{4}. Find α, correct to 3 decimal places.

