HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2017 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 2 – TEST 2 1 hour 20 minutes

This examination paper consists of 2 pages. This paper consists of 6 questions. The maximum marks for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write in ink.
- 2. Write your name clearly on each sheet of paper used.
- 3. Answer **ALL** questions.
- 4. Do **NOT** do questions beside one another.
- 5. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to **three** (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae sheet
- 2. Scientific Non-programmable calculator (non-graphical)
- 1) a) Write down the n^{th} term of the sequence 5, 9, 13, 17, ...

b) Hence, show that the sum of the first *n* terms of the series $5^2 + 9^2 + 13^2 + 17^2 + \cdots$ is given by

$$\frac{1}{3}n(16n^2 + 36n + 23)$$

Total 9 marks

- 2) The first three terms of a geometric sequence are $\sin x$, $\sin 2x$ and $4 \sin x \cos^2 x$,
 - a) Find the common ratio r, in its simplest form.

Given that $x = \cos^{-1}\left(\frac{1}{4}\right)$, x > 0

b) Show that the sum to infinity of the series is $\frac{\sqrt{15}}{2}$.

Total 7 marks

3) a) Given that

show that

$$f(r+1) - f(r) = r \times r!$$

f(r) = r!

 $\sum (r \times r!)$

[3]

[5]

Total 8 marks

b) Hence find

PLEASE TURN OVER

[8]

[1]

[4]

[3]

4)
$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + y = 0$$

a) Find an expression for $\frac{d^3y}{dx^3}$ in terms of $\frac{d^2y}{dx^2}$, $\frac{dy}{dx}$ and y. [5]

Given that y = 1 and $\frac{dy}{dx} = 1$ at x = 0.

b) Find the power series for y, in ascending powers of x, up to and including the term in x^3 . [6]

Total 11 marks

- 5) $f(x) = (1+3x)^{-1}, |x| < \frac{1}{3}$.
 - a) Expand f(x) in ascending powers of x up to and including the term in x^3 . [5]
 - b) Hence show that,

$$\frac{1+x}{1+3x} \approx 1 - 2x + 6x^2 - 18x^3$$

c) By taking a suitable value for x, which should be stated, use the series expansion in part b) to find an approximate value for $\frac{101}{103}$, giving your answer to 5 decimal places. [5]

Total 13 marks

[3]

6) The figure below shows the graph of $y = 2 \cos x$ and $y = e^x$ in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

Given that $f(x) = e^x - 2\cos x$

- a) Write down the number of solutions of the equation f(x) = 0 in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. [1]
- b) Show that the equation f(x) = 0 has a solution, α , in the interval [0, 1].
- c) Using 0.5 as a first approximation to α, use the Newton-Raphson process once to find an improved estimate for α, giving your answer correst to 2 decimal places. [4]

There is another root, β , of the equation f(x) = 0 in the interval [-2, -1].

d) Use linear interpolation once on this interval to estimate the value of β, giving your answer correct to 2 decimal places.
[3]

Total 12 marks

[4]

END OF EXAMINATION