HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2017
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 20 minutes

This examination paper consists of 2 pages.
This paper consists of 6 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
1) a) Write down the $n^{\text {th }}$ term of the sequence $5,9,13,17, \ldots$
b) Hence, show that the sum of the first n terms of the series $5^{2}+9^{2}+13^{2}+17^{2}+\cdots$ is given by $\frac{1}{3} n\left(16 n^{2}+36 n+23\right)$
2) The first three terms of a geometric sequence are $\sin x, \sin 2 x$ and $4 \sin x \cos ^{2} x$,
a) Find the common ratio r, in its simplest form.

Given that $x=\cos ^{-1}\left(\frac{1}{4}\right), x>0$
b) Show that the sum to infinity of the series is $\frac{\sqrt{15}}{2}$.
3) a) Given that

$$
f(r)=r!
$$

show that

$$
f(r+1)-f(r)=r \times r!
$$

b) Hence find

$$
\sum_{r=1}^{n}(r \times r!)
$$

4) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y=0$
a) Find an expression for $\frac{d^{3} y}{d x^{3}}$ in terms of $\frac{d^{2} y}{d x^{2}}, \frac{d y}{d x}$ and y.

Given that $y=1$ and $\frac{d y}{d x}=1$ at $x=0$.
b) Find the power series for y, in ascending powers of x, up to and including the term in x^{3}.
5) $f(x)=(1+3 x)^{-1},|x|<\frac{1}{3}$.
a) Expand $f(x)$ in ascending powers of x up to and including the term in x^{3}.
b) Hence show that,

$$
\begin{equation*}
\frac{1+x}{1+3 x} \approx 1-2 x+6 x^{2}-18 x^{3} \tag{3}
\end{equation*}
$$

c) By taking a suitable value for x, which should be stated, use the series expansion in part b) to find an approximate value for $\frac{101}{103}$, giving your answer to 5 decimal places.

Total 13 marks
6) The figure below shows the graph of $y=2 \cos x$ and $y=e^{x}$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Given that $f(x)=e^{x}-2 \cos x$
a) Write down the number of solutions of the equation $f(x)=0$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
b) Show that the equation $f(x)=0$ has a solution, α, in the interval $[0,1]$.
c) Using 0.5 as a first approximation to α, use the Newton-Raphson process once to find an improved estimate for α, giving your answer correst to 2 decimal places.

There is another root, β, of the equation $f(x)=0$ in the interval $[-2,-1]$.
d) Use linear interpolation once on this interval to estimate the value of β, giving your answer correct to 2 decimal places.

