HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2017 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 2 – TEST 1 1 HOUR 20 MINUTES

This examination paper consists of 3 printed pages.

This paper consists of **7** questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer ALL questions
- (iii) Number your questions identically as they appear on the question paper and do **NOT write your solutions to different questions** beside each other.
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

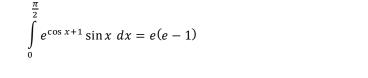
EXAMINATION MATERIALS ALLOWED

- (a) Mathematical formulae
- (b) Scientific calculator (non-programmable, non-graphical)
- 1. Differentiate with respect to *x*.

(a)
$$x \sin^{-1}\left(\frac{x}{2}\right)$$
 [3]

(b)
$$\frac{\ln(x^2+1)}{x}$$
 [3]

[7]


2. A curve *C* has equation $2^{x} + y^{2} = 2xy$ Find the exact value of $\frac{dy}{dx}$ at the point on *C* with coordinates (3, 2). 3. A curve *C* has parametric equations

$$x = \sin^2 t$$
, $y = 2 \tan t$, $0 \le t < \frac{\pi}{2}$

(a) Find $\frac{dy}{dx}$ in terms of *t*. [4]

The tangent to *C* at the point where $t = \frac{\pi}{3}$ cuts the *x*-axis at the point *P*.

4. Using the substitution $u = \cos x + 1$, or otherwise, show that

5.

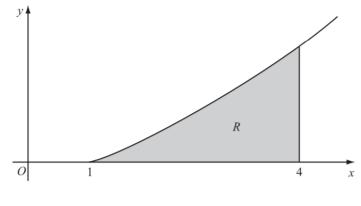


Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the line x = 4.

The table below shows corresponding values of *x* and *y* for $y = x \ln x$.

x	1	1.5	2	2.5	3	3.5	4
у	0	0.608			3.296	4.385	5.545
(a) Complete the table, giving your answers to 3 decimal places.							

(a) Complete the table, giving your answers to 3 decimal places.

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of *R*, giving your answer to 2 decimal places. [4]

- Use integration by parts to find $\int x \ln x \, dx$. (c) (i)
 - Hence find the exact area of *R*, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$ where *a* and *b* (ii) [7] are integers.

[6]

- 6. Given that $z = \sqrt{3} i$
 - (a) Show that $\frac{z}{z^*} = \frac{1}{2} \frac{\sqrt{3}}{2}i$ [3]
 - (b) Find the value of $\left|\frac{z}{z^*}\right|$ [1]

(c) Verify, for
$$z = \sqrt{3} - i$$
, that $\arg\left(\frac{z}{z^*}\right) = \arg z - \arg z^*$ [4]

- (d) Display on a single Argand diagram z, z^* and $\frac{z}{z^*}$. [3]
- 7. Given that 3 + i is a root of the equation f(x) = 0, where

$$f(x) = 2x^3 + ax^2 + bx - 10$$
 $a, b \in \mathbb{R}$

[3]

- (a) find the other two roots of the equation f(x) = 0, [4]
- (b) find the value of *a* and the value of *b*.

END OF EXAMINATION

QUESTION 1 SOLUTION

(a)

$$\sin^{-1}\left(\frac{x}{2}\right) + \frac{x}{2\sqrt{1 - \left(\frac{x}{2}\right)^2}}$$

(b)

$$\frac{\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]}{2}$$

QUESTION 2 SOLUTION

 $4\ln 2 - 2 = \frac{dy}{dx}$

QUESTION 3 SOLUTION

 $x = \frac{3}{8}$

QUESTION 4 SOLUTION

QUESTION 5 SOLUTION

 $-e^{1} + e^{2}$

(a) 1.386, 2.291

(b) $A = \frac{1}{4} [29.47]$

≈ 7.37

 $\frac{x^2}{2}\ln x - \frac{x^2}{4} + c$

 $\frac{1}{4}(64\ln 2 - 15)$

QUESTION 6 SOLUTION

(c) (i)

(d)

(a)

(b) 1

(c)

 $\frac{1}{2} - \frac{\sqrt{3}}{2}i$

 $-\frac{\pi}{3}$

(a) $x \frac{dy}{dx} = \frac{2 \sec^2 t}{2 \sin t \cos t}$

$$\frac{\left[\left(\frac{2x}{x^2+1}\right)x - \ln(x^2+1)\right]}{x^2}$$

$$\frac{\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]}{2}$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]$$

$$\frac{\left[\left(\frac{2x}{x^2+1}\right)x - \ln(x^2+1)\right]}{2}$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln\left(x^2+1\right)\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln x\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x - \ln x\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x\right]$$

$$\left[\left(\underline{2x}\right)\right]$$

$$\left[\left(\frac{2x}{2}\right)x\right]$$

$$\left[\left(\frac{2x}{2}\right)x\right]$$

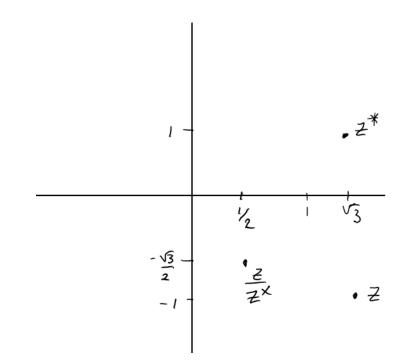
$$\left[\left(\frac{2x}{2}\right)x\right]$$

$$\left[\left(\underline{2x}\right)\right]$$

$$\left[\left(\frac{2x}{2x}\right)x-1\right]$$

$$\left[\left(\frac{2x}{2x}\right)x\right]$$

$$\left[\left(\frac{2x}{2}\right)x\right]$$


$$\left[\left(\frac{2x}{2}\right)x - \ln\left(x\right)\right]$$

$$\left[\left(\frac{2x}{x^2+1}\right)x-\ln x\right]$$

$$\left[\left(\frac{2x}{2}\right)_{x}\right]$$

(b)

$$[(_2x_)]_{x}$$

QUESTION 7 SOLUTION

(a) $\gamma = \frac{1}{2}$

(b) Type equation here.

$$a = -13$$

(c) 26 = b