UNIT 2 - TEST 1

1 HOUR 20 MINUTES

This examination paper consists of 3 printed pages.
This paper consists of 7 questions.
The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other.
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED
(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1. Differentiate with respect to x.
(a) $x \sin ^{-1}\left(\frac{x}{2}\right)$
(b) $\frac{\ln \left(x^{2}+1\right)}{x}$
2. A curve C has equation $2^{x}+y^{2}=2 x y$

Find the exact value of $\frac{d y}{d x}$ at the point on C with coordinates $(3,2)$.
3. A curve C has parametric equations

$$
x=\sin ^{2} t, \quad y=2 \tan t, \quad 0 \leq t<\frac{\pi}{2}
$$

(a) Find $\frac{d y}{d x}$ in terms of t.

The tangent to C at the point where $t=\frac{\pi}{3}$ cuts the x-axis at the point P.
(b) Find the x-coordinate of P.
4. Using the substitution $u=\cos x+1$, or otherwise, show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} e^{\cos x+1} \sin x d x=e(e-1) \tag{6}
\end{equation*}
$$

5.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=x \ln x, x \geq 1$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line $x=4$.

The table below shows corresponding values of x and y for $y=x \ln x$.

x	1	1.5	2	2.5	3	3.5	4
y	0	0.608			3.296	4.385	5.545

(a) Complete the table, giving your answers to 3 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.
(c) (i) Use integration by parts to find $\int x \ln x d x$.
(ii) Hence find the exact area of R, giving your answer in the form $\frac{1}{4}(a \ln 2+b)$ where a and b are integers.
6. Given that $z=\sqrt{3}-i$
(a) Show that $\frac{z}{z^{*}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i$
(b) Find the value of $\left|\frac{z}{z^{*}}\right|$
(c) Verify, for $z=\sqrt{3}-i$, that $\arg \left(\frac{z}{z^{*}}\right)=\arg z-\arg z^{*}$
(d) Display on a single Argand diagram z, z^{*} and $\frac{z}{z^{*}}$.
7. Given that $3+i$ is a root of the equation $f(x)=0$, where

$$
f(x)=2 x^{3}+a x^{2}+b x-10 \quad a, b \in \mathbb{R}
$$

(a) find the other two roots of the equation $f(x)=0$,
(b) find the value of a and the value of b.

QUESTION 1 SOLUTION
(a)

$$
\sin ^{-1}\left(\frac{x}{2}\right)+\frac{x}{2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}}
$$

(b)

$$
\frac{\left[\left(\frac{2 x}{x^{2}+1}\right) x-\ln \left(x^{2}+1\right)\right]}{x^{2}}
$$

QUESTION 2 SOLUTION

$$
4 \ln 2-2=\frac{d y}{d x}
$$

QUESTION 3 SOLUTION
(a) $x \frac{d y}{d x}=\frac{2 \sec ^{2} t}{2 \sin t \cos t}$
(b)

$$
x=\frac{3}{8}
$$

QUESTION 4 SOLUTION

$$
-e^{1}+e^{2}
$$

QUESTION 5 SOLUTION
(a) $1.386,2.291$
(b) $A=\frac{1}{4}[29.47]$

$$
\approx 7.37
$$

(c) (i)

$$
\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c
$$

(d)

$$
\frac{1}{4}(64 \ln 2-15)
$$

QUESTION 6 SOLUTION
(a)

$$
\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

(b) 1
(c)

$$
-\frac{\pi}{3}
$$

(d)

QUESTION 7 SOLUTION
(a) $\gamma=\frac{1}{2}$
(b) Type equation here.
$a=-13$
(c) $26=b$

