HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2016
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 20 minutes

This examination paper consists of 2 pages.
This paper consists of 5 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. A geometric progression has first term $\log _{2} 27$ and common ratio $\log _{2} y$.
(a) Find the set of values of y for which the geometric progression has a sum to infinity.
(b) Find the EXACT value of y for which the sum to infinity of the geometric progression is3.
4. (a) Write down the first four terms of Maclaurin expansion for $\ln (1+x)$.
(b) Hence, determine the first four terms for the expansion of $\ln \left(1+x^{2}\right)$.
(c) By using your result from (b) find the EXACT value of

$$
1-\frac{1}{2}\left(\frac{1}{2}\right)^{2}+\frac{1}{3}\left(\frac{1}{2}\right)^{4}-\frac{1}{4}\left(\frac{1}{2}\right)^{6}+\cdots
$$

3. (a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{r(r+2)}=\frac{n(a n+b)}{4(n+1)(n+2)} \tag{8}
\end{equation*}
$$

where a and b are constants to be found.
(c) Hence show that

$$
\begin{equation*}
\sum_{r=n+1}^{2 n} \frac{1}{r(r+2)}=\frac{n(4 n+5)}{4(n+1)(n+2)(2 n+1)} \tag{5}
\end{equation*}
$$

Total 18 marks
4. (a) Find the binomial expansion of $\sqrt{1-8 x}$, in ascending powers of x up to and including the term in x^{3}, simplifying each term.
(b) State the values of x for which the expansion is valid.
(c) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and obtain an approximation to $\sqrt{23}$. Give your answer correct to 5 decimal places.

Total 10 marks
5. (a) Show that $\frac{d}{d x}\left(2^{x}\right)=2^{x} \ln 2$
(b) Given that $f(x)=2^{x}+x-4$
i. Show that the equation $f(x)=0$ has a root α in the interval $[1,2]$.
ii. Use linear interpolation in the interval [1,2] to find an approximation to α. Give your answer as an EXACT value.
iii. Taking $x_{1}=1$ as a first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to obtain a second approximation to α. Give your answer to $\mathbf{3}$ decimal places.

Total 15 marks

