HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2015
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 1
 1 hour 20 minutes

This examination paper consists of 3 pages.
This paper consists of 5 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. A botanist is studying the regeneration of an area of moorland following a fire. The total biomass in the area after t years is denoted by M tonnes and two models are proposed for the growth of M .

Model A is given by

$$
M=900-\frac{1500}{3 t+2}
$$

Model B is given by

$$
M=900-\frac{1500}{2+5 \ln (t+1)}
$$

(a) For each model, find to 3 significant figures
i. the value of M when $\mathrm{t}=3$
ii. the rate at which the biomass is increasing when $\mathrm{t}=3$.

Total 10 marks
2. Given the experimental heat equation $u(x, t)=e^{-k^{2} t} \sin x$, where k is a constant
(a) Find

$$
\begin{align*}
& \text { i. } \frac{\partial u}{\partial t} \tag{1}\\
& \text { ii. } \frac{\partial^{2} u}{\partial x^{2}}
\end{align*}
$$

(b) Hence determine if the experimental equation satisfies the theoretical heat

$$
\begin{equation*}
\text { equation } \frac{\partial u}{\partial t}=k^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{2}
\end{equation*}
$$

Total 5 marks
3. (a) Differentiate $x \tan ^{-1} x$ with respect to x.
(b) Hence, show that $\int_{0}^{1} \tan ^{-1} x=\frac{\pi}{4}-\ln \sqrt{2}$

Total 9 marks
4. (a) Copy and complete the table below for the equation $y=\frac{2 \sin 2 x}{1+\cos x}$. Give your answers to 5 decimal places.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157		0

(b) Use the trapezium rule, with all the values of y in the completed table, to solve

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{2 \sin 2 x}{1+\cos x} d x \tag{3}
\end{equation*}
$$

giving your answer to 4 decimal places.
(c) Using the substation $u=1+\cos x$ show that

$$
\begin{equation*}
\int \frac{2 \sin 2 x}{1+\cos x} d x=4 \ln (1+\cos x)-4 \cos x-4+c \tag{6}
\end{equation*}
$$

(d) Hence calculate the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{2 \sin 2 x}{1+\cos x} d x \tag{2}
\end{equation*}
$$

(e) State, to 2 significant figures, the difference between the exact value in (d) and the approximate value in (b).
5. (a) Use DeMoivre Theorem to prove that $\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$
(b) Given the complex numbers $z_{1}=2+3 i, z_{2}=3+2 i, z_{3}=\boldsymbol{a}+\boldsymbol{b} i$ where $a, b \in \mathbb{R}$
(i) Find the exact value of $\left|z_{1}+z_{2}\right|$ in the form $x \sqrt{2}$.

Given that $\boldsymbol{w}=\frac{z_{1} z_{3}}{z_{2}}$
(ii) find \boldsymbol{w} in terms of \boldsymbol{a} and \boldsymbol{b}, giving your answer in the form $x+i y$, $x, y \in \mathbb{R}$
[6]
Given also that $\boldsymbol{w}=\frac{17}{13}-\frac{7}{13} i$
(iii)find the values of \boldsymbol{a} and \boldsymbol{b}.
(iv)find $\arg \boldsymbol{w}$, giving your answer in radians to 3 decimal places.

Total 22 marks

