HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2015 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 2 – TEST 1 1 hour 20 minutes

This examination paper consists of 3 pages. This paper consists of 5 questions. The maximum marks for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write in ink.
- 2. Write your name clearly on each sheet of paper used.
- 3. Answer ALL questions.
- 4. Do **NOT** do questions beside one another.
- 5. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to **three** (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae sheet
- 2. Scientific Non-programmable calculator (non-graphical)
- 1. A botanist is studying the regeneration of an area of moorland following a fire. The total biomass in the area after t years is denoted by M tonnes and two models are

proposed for the growth of M.

Model A is given by

$$M = 900 - \frac{1500}{3t+2}$$

Model B is given by

$$M = 900 - \frac{1500}{2 + 5\ln(t+1)}$$

- (a) For each model, find to 3 significant figures
 - i. the value of M when t = 3 [2]
 - ii. the rate at which the biomass is increasing when t = 3. [8]
 - **Total 10 marks**
- 2. Given the experimental heat equation $u(x, t) = e^{-k^2 t} \sin x$, where k is a constant
 - (a) Find

i.
$$\frac{\partial u}{\partial t}$$
 [1]

ii.
$$\frac{\partial^2 u}{\partial x^2}$$
 [2]

PLEASE TURN OVER

(b) Hence determine if the experimental equation satisfies the theoretical heat

equation
$$\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}$$
 [2]

Total 5 marks

3. (a) Differentiate $x \tan^{-1} x$ with respect to x. [3]

(b) Hence, show that
$$\int_0^1 \tan^{-1} x = \frac{\pi}{4} - \ln \sqrt{2}$$
 [6]

Total 9 marks

4. (a) Copy and complete the table below for the equation $y = \frac{2 \sin 2x}{1 + \cos x}$. Give your answers to 5 decimal places.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
У	0		1.17157		0

(b) Use the trapezium rule, with all the values of y in the completed table, to solve

$$\int_0^{\frac{\pi}{2}} \frac{2\sin 2x}{1+\cos x} \, dx$$

giving your answer to 4 decimal places.

(c) Using the substation $u = 1 + \cos x$ show that

$$\int \frac{2\sin 2x}{1+\cos x} \, dx = 4\ln(1+\cos x) - 4\cos x - 4 + c \tag{6}$$

(d) Hence calculate the exact value of

$$\int_{0}^{\frac{\pi}{2}} \frac{2\sin 2x}{1 + \cos x} \, dx$$
 [2]

(e) State, to 2 significant figures, the difference between the exact value in (d) and the approximate value in (b). [1]

Total 14 marks

PLEASE TURN OVER

[2]

[3]

5. (a) Use DeMoivre Theorem to prove that $\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$ [4]

(b) Given the complex numbers z₁ = 2 + 3i, z₂ = 3 + 2i, z₃ = a + bi where a, b ∈ ℝ
(i) Find the exact value of |z₁ + z₂| in the form x√2. [4] Given that w = <sup>z₁z₃/_{z₁}
</sup>

Given that
$$w = \frac{z_1 z_3}{z_2}$$

(ii) find w in terms of a and b, giving your answer in the form x + iy,

$$x, y \in \mathbb{R}$$
 [6]

Given also that $w = \frac{17}{13} - \frac{7}{13}i$

(iii) find the values of a and b. [6]

(iv)find $\arg w$, giving your answer in radians to 3 decimal places. [2]

Total 22 marks