HARRISON COLLEGE INTERNAL EXAMINATION 2014 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 2 – TEST 2 1 hour 30 minutes

This examination paper consists of 2 pages. This paper consists of 5 questions. The maximum marks for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Do **NOT** do questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to **three** (3) significant figures.

EXAMINATION MATERIALS ALLOWED

Mathematical formulae sheet
 Scientific Non-programmable calculator (non-graphical)

1. A sequence is given by

$$x_1 - 1$$
$$x_{n+1} = x_n(p + x_n)$$

1

where p is a constant $(p \neq 0)$.

	(i) Find x_2 in terms of p .	[1]
	(ii) Show that $x_3 = 1 + 3p + 2p^2$	[2]
	Given that $x_3 = 1$,	
	(iii) find the value of p .	[3]
	(iv) write down the value of x_{28} .	[1]
		Total: 7 marks
2.	The second and third terms of a geometric series are 192 and 144 respectively.	Ngga Selapa - 1
	For this series, find	

	Total: 1	4 marks
(iv)	the smallest value of n for which the sum of the first n terms of the series exceeds 1	000.[6]
(iii)	the sum to infinity	[2]
(ii)	the first term	[2]
(i)	the common ratio	[4]

3.(i) Obtain the first three terms of the binomial expansion of $(1 + 4x^2)^{\frac{1}{2}}$ in ascending powers of x	[3]
(ii) State the range of values of x for which the full expansion is valid.	[2]

PLEASE TURN OVER

(iii) By integrating the three terms in your expansion, find an approximate value for

 $\int_0^{\frac{1}{4}} (1+4x^2)^{\frac{1}{2}} dx$

Total: 8 marks

[3]

4. (a) Given that

$$f(r) = (r-1)r(r+1)(r+2)$$

show that

$$f(r+1) - f(r) = kr(r+1)(r+2)$$

stating the value of the constant k.

(b) Use the method of differences to find

$$\sum_{r=1}^{n} r(r+1)(r+2)$$

giving your answer in factorized form.

(c) Prove by mathematical induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(n+1)(n+2)}$$
[10]

(d) Hence find

$$\sum_{r=1}^{\infty} \frac{2}{r(r+1)(r+2)}$$
[2]

Total: 19 marks

5. The temperature $\theta^{\circ}C$ of a room t hours after a heating system has been turned on is given by

$$\theta = t + 26 - 20e^{-0.5t}, t \ge 0.$$

The heating system switches off when $\theta = 20$. The time $t = \alpha$, when the heating system switches off, is the solution of the equation $\theta - 20 = 0$, where α lies in the interval [1.8, 2].

- (a) Using the end points of the interval [1.8, 2], find, by linear interpolation once, an approximation to α. Give your answer to 2 decimal places.
- (b) Taking 1.9 as a first approximation to α, use the Newton-Raphson procedure once to obtain a second approximation to α. Give your answer to 3 decimal places. [6]
- (c) Use your answer to part (b) to find, to the nearest minute, the time for which the heating system was on.

Total: 12 marks

END OF EXAMINATION

[3]

[4]