HARRISON COLLEGE INTERNAL EXAMINATION 2014
CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 2 - TEST 1
1 hour 30 minutes
This examination paper consists of 2 pages.
This paper consists of 3 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (a) Given that $y^{3}+3 y=x^{3}$, show that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1} \tag{5}
\end{equation*}
$$

(b) Given that $f(x, y)=e^{x y}$, find $f_{x y}$.
(c) The curve C is defined parametrically by

$$
x=4 \sin ^{2} t, \quad y=\frac{2}{\sec t} \quad 0 \leq t \leq \frac{\pi}{2}
$$

The point $P(3,1)$ lies on the curve \boldsymbol{C}.
i. Obtain an expression for $\frac{d y}{d x}$ in terms of t .
ii. Find the value of t at the point P.
iii. Find the equation of the normal to the curve \mathbf{C} at P .
2. (a) Let $f(x)=\frac{4 x}{(3 x+1)(x+1)^{2}}$
i. Express $f(x)$ in partial fractions.
ii. Hence show that $\int_{0}^{1} f(x) d x=1-\ln 2$.
(b) i. Show that, using the substitution $x=e^{u}$

$$
\begin{equation*}
\int \frac{2+\ln x}{x^{2}} d x=\int(2+u) e^{-u} d u \tag{3}
\end{equation*}
$$

ii. Hence, or otherwise, evaluate in terms of e

$$
\begin{equation*}
\int_{1}^{e} \frac{2+\ln x}{x^{2}} d x \tag{7}
\end{equation*}
$$

(c) Use the trapezium rule with 4 strips to find an approximation to

$$
\begin{equation*}
\int_{1}^{3} \frac{1}{x^{3}+3} d x \tag{3}
\end{equation*}
$$

giving your answer to 3 significant figures.
Total: 23 marks
3. (a) The complex number $1+i \sqrt{3}$ is denoted by u.
i. Express u in the form $r(\cos \theta+i \sin \theta)$ where $r>0$ and $-\pi<\theta \leq \pi$.
ii. Hence, or otherwise, find the modulus and argument of u^{2}.
iii. Show that u is a root of the equation $z^{2}-2 z+4=0$.
iv. Hence state the other root.
(b) The point P represents a complex number z on an Argand diagram, where

$$
|z+1+2 i|=\sqrt{2}|z-1|
$$

i. Show that the locus of P is a circle, stating the coordinates of the centre and the radius of this circle. [7]

The point Q represents a complex number z on an Argand diagram, where

$$
\begin{equation*}
\tan [\arg (z+1)]=1 \tag{4}
\end{equation*}
$$

ii. \quad On the same Argand diagram, sketch the locus of P and the locus of Q.
iii. On your diagram, shade the region which satisfies both

$$
\begin{equation*}
|z+1+2 i|>\sqrt{2}|z-1| \text { and } \tan [\arg (z+1)]>1 \tag{1}
\end{equation*}
$$

