HARRISON COLLEGE INTERNAL EXAMINATION 2013
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 30 minutes

This examination paper consists of 2 pages.
This paper consists of 4 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. a) Express $\frac{1}{r(r+2)}$ in partial fractions.
b) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{4}{r(r+2)}=\frac{n(3 n+5)}{(n+1)(n+2)} \tag{10}
\end{equation*}
$$

c) Find, to 4 decimal places, the value of

$$
\begin{equation*}
\sum_{r=50}^{100} \frac{4}{r(r+2)} \tag{3}
\end{equation*}
$$

Total: 18 marks
2. Given that $f(x)=\tan x$,
a) Find

$$
\begin{array}{ll}
\text { i. } & f\left(\frac{\pi}{4}\right) \\
\text { ii. } & f^{\prime}\left(\frac{\pi}{4}\right) \\
\text { iii. } & f^{\prime \prime}\left(\frac{\pi}{4}\right) \tag{3}
\end{array}
$$

iv. $\quad f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)$
b) Find the Taylor series expansion of $\tan x$, in ascending powers of $\left(x-\frac{\pi}{4}\right)$, up to and including the term in $\left(x-\frac{\pi}{4}\right)^{3}$.
c) Hence, show that

$$
\begin{equation*}
\tan \left(\frac{3 \pi}{10}\right) \approx 1+\frac{\pi}{10}+\frac{\pi^{2}}{200}+\frac{\pi^{3}}{3000} \tag{3}
\end{equation*}
$$

Total: 15 marks
3. a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(2+k x)^{7}$, where k is a non-zero constant. Give each term in its simplest form.
b) Given that, in this expansion, the coefficients of x^{2} is 6 times the coefficient of x, find
i. the value of k
ii. the coefficient of x
iii. the coefficient of x^{2}
iv. the coefficient of x^{3}
v. Rewrite the expansion in part a replacing the k and simplify.
c) Hence evaluate $(2.02)^{7}$ correct to 2 decimal places.

Total: $\mathbf{1 3}$ marks
4. The equation $24 x^{3}+36 x^{2}+18 x-5=0$ has one real root, α.
a) Show that α lies in the interval $0.1<x<0.2$.
b) Starting in the interval $0.1<x<0.2$, use interval bisection twice to obtain an interval of width 0.025 within which α must lie.
c) Taking $x_{1}=0.2$ as a first approximation to α, use the Newton-Raphson method to find a second approximation, x_{2}, to α. Give your answer to four decimal places.

Total: 14 marks

