PURE MATHEMATICS PREVIEW UNIT 2 - TEST 1

- 1. (a) One root of the quadratic equation $z^2 + pz + q = 0$, where *p* and *q* are real, is the complex number (2 + 3i).
 - (i) Write down the other root. [1]
 - (ii) Find the values of p and q. [4]
 - (b) Use de Moivre's theorem to obtain the roots of the equation $z^3 = 8$ in Cartesian form. [5]

(c) If z = x + iy and $z^* = x - iy$ where $x, y \in R$, find

(i) the equation of the circle in the x-y plane which is given by

$$|z - 2 - i\sqrt{3}| = \sqrt{2}|z^* - 1 + i\sqrt{3}|$$
^[4]

(ii) the centre and radius of this circle. [2]

(d) By expressing $cos\theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, show that

$$\cos^4\theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3)$$
[5]

2. (a) Find
$$\frac{dy}{dx}$$
 when:
(i) $y = e^{\cos x} + \sin^{-1}(x)$ [3]

(ii)
$$y = \frac{tan^{-1}x}{lnx}$$
[3]

(b) The equation of a curve is given by

$$4x - y^2 = xy$$

Find the equation of the tangent to the given curve at the point (5, -2). [4]

(c) A curve is defined by the parametric equations

$$y = t^3$$
 and $x = t^2 + t$

Find in terms of t

(i)
$$\frac{dy}{dx}$$
 [3]

(ii)
$$\frac{d^2y}{dx^2}$$
 [4]

(d) Let
$$f(x,y) = 4x^2 - 5x^3y + 3y^3$$
 find $\frac{\partial^2 f}{\partial x \partial y}$ [2]

3. (a) (i) Express
$$f(x) = \frac{x-1}{(x-2)^2(x+1)}$$
 in partial fractions. [4]

- (ii) Hence find $\int f(x)dx$ [3]
- (b) It is given that for non-negative integers n,

$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos x \, dx$$

(i) Show that for $n \ge 2$

$$I_n = (\frac{\pi}{2})^n - n(n-1)I_{(n-2)}$$
[5]

(ii) Find
$$I_4$$
 in terms of π . [4]

(c) Use the trapezium rule with 3 intervals of equal width to estimate the value of

$$\int_0^3 \log(x^2 + 9) \, dx \tag{4}$$

Answers:

1. (a) (i)
$$2-3i$$
 (ii) $p = -4$ $q = 13$
(b) 2, $-1+i\sqrt{3}$, $-1-i\sqrt{3}$
(c) (i) $x^2 + (y - \sqrt{3})^2 = 2$ (ii) centre $(0,\sqrt{3})$ radius $= \sqrt{2}$
2. (a) (i) $-\sin x e^{\cos x} + \frac{1}{\sqrt{1-x^2}}$ (ii) $\frac{\ln x(\frac{1}{1+x^2}) - \tan^{-1}x(\frac{1}{x})}{(\ln x)^2}$
(b) $(y+2) = 6(x-5)$
(c) (i) $\frac{3t^2}{2t+1}$ (ii) $\frac{6t^2 + 6t}{(2t+1)^3}$
(d) $-15x^2$
3. (a) (i) $\frac{-2}{9(x+1)} + \frac{2}{9(x-2)} + \frac{1}{3(x-2)^2}$ (ii) $\frac{-2}{9}\ln(x+1) + \frac{2}{9}\ln(x-2) - \frac{1}{3}(x-2)^{-1} + c$
(b) (ii) $\frac{\pi^4}{16} - 3\pi^2 + 24$
(c) 3.22