PURE MATHEMATICS

PREVIEW UNIT 2 - TEST 1

1. (a) One root of the quadratic equation $z^{2}+p z+q=0$, where p and q are real, is the complex number $(2+3 i)$.
(i) Write down the other root.
(ii) Find the values of p and q.
(b) Use de Moivre's theorem to obtain the roots of the equation $z^{3}=8$ in Cartesian form.
(c) If $z=x+i y$ and $z^{*}=x-i y$ where $x, y \in R$, find
(i) the equation of the circle in the $x-y$ plane which is given by

$$
\begin{equation*}
|z-2-i \sqrt{3}|=\sqrt{2}\left|z^{*}-1+i \sqrt{3}\right| \tag{4}
\end{equation*}
$$

(ii) the centre and radius of this circle.
(d) By expressing $\cos \theta$ in terms of $e^{i \theta}$ and $e^{-i \theta}$, show that

$$
\begin{equation*}
\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3) \tag{5}
\end{equation*}
$$

2. (a) Find $\frac{d y}{d x}$ when:
(i) $y=e^{\cos x}+\sin ^{-1}(x)$
(ii) $y=\frac{\tan ^{-1} x}{\ln x}$
(b) The equation of a curve is given by

$$
4 x-y^{2}=x y
$$

Find the equation of the tangent to the given curve at the point $(5,-2)$.
(c) A curve is defined by the parametric equations

$$
y=t^{3} \text { and } x=t^{2}+t
$$

Find in terms of t
(i) $\frac{d y}{d x}$
(ii) $\frac{d^{2} y}{d x^{2}}$
(d) Let $f(x, y)=4 x^{2}-5 x^{3} y+3 y^{3}$ find $\frac{\partial^{2} f}{\partial x \partial y}$
3.
(a) (i) Express $f(x)=\frac{x-1}{(x-2)^{2}(x+1)}$ in partial fractions.
(ii) Hence find $\int f(x) d x$
(b) It is given that for non-negative integers n,

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \cos x d x
$$

(i) Show that for $n \geq 2$

$$
\begin{equation*}
I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{(n-2)} \tag{5}
\end{equation*}
$$

(ii) Find I_{4} in terms of π.
(c) Use the trapezium rule with 3 intervals of equal width to estimate the value of

$$
\begin{equation*}
\int_{0}^{3} \log \left(x^{2}+9\right) d x \tag{4}
\end{equation*}
$$

Answers:

1. (a) (i) $2-3 i \quad$ (ii) $p=-4 \quad q=13$
(b) $2,-1+i \sqrt{3},-1-i \sqrt{3}$
(c) (i) $x^{2}+(y-\sqrt{3})^{2}=2$ (ii) centre $(0, \sqrt{3})$ radius $=\sqrt{2}$
2. (a) (i) $-\sin x e^{\cos x}+\frac{1}{\sqrt{1-x^{2}}}$
(ii) $\frac{\ln x\left(\frac{1}{\left.1+x^{2}\right)}-\tan ^{-1} x\left(\frac{1}{x}\right)\right.}{(\ln x)^{2}}$
(b) $(y+2)=6(x-5)$
(c) (i) $\frac{3 t^{2}}{2 t+1}$
(ii) $\frac{6 t^{2}+6 t}{(2 t+1)^{3}}$
(d) $-15 x^{2}$
3. (a) (i) $\frac{-2}{9(x+1)}+\frac{2}{9(x-2)}+\frac{1}{3(x-2)^{2}} \quad$ (ii) $\frac{-2}{9} \ln (x+1)+\frac{2}{9} \ln (x-2)-\frac{1}{3}(x-2)^{-1}+c$
(b) (ii) $\frac{\pi^{4}}{16}-3 \pi^{2}+24$
(c) 3.22
