HARRISON COLLEGE INTERNAL EXAMINATIONS 2012 : PURE MATHEMATICS [UNIT2 – TEST: 3]

Question	Working	Marks & comments	
1.(a)	¹² C ₆	1	
	= 924	1 Total = 2	
(b)	${}^{5}C_{2} \times {}^{4}C_{2} \times {}^{3}C_{2} = 180$	1 1	
	So required probability = $\frac{180}{924}$	1 Total = 3	
(b)	${}^{5}C_{3} \times {}^{7}C_{3} = 350$	1 1	
	So required probability $=\frac{350}{924}$	1 Total =3	

SOLUTIONS AND MARK SCHEME

2 (i)	$\frac{8!}{2! \times 2!}$ = 10 080			1 [for 8!] 1 [for division by 2! × 2!] Total =2
(ii)	$\frac{7!}{2!}$ = 2520			1 [for 7!] 1 [for division by 2!} Total =2
(iii)	Pr (B and B'):	$\left(\frac{2}{8} \times \frac{6}{7}\right)$		1
	+ Pr(B' and B):	$\left(\frac{6}{8} \times \frac{2}{7}\right)$		
	+ Pr(B and B):	$\left(\frac{2}{8} \times \frac{1}{7}\right)$		1
		Sum of above		1
			$=\frac{26}{56}=\frac{13}{28}$	1 (correct answer only) Total =4

3(a)	Since A and B are independent	
	$\Rightarrow P(A \cap B) = P(A) \times P(B)$	1
	Let $P(B) = x$	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	1
	0.7 = 0.6 + x - 0.6x	1
	x = 0.25	1 Total =4
(b)	Probability that A or B occurs but not both	
	$= 0.6 + 0.25 - 2 \times (0.6 \times 0.25)$	1
	= 0.55	1 Total = 2

4 (a)	$\frac{(2-3i)^2}{2+i} = \frac{(2-3i)\times(2-3i)}{2+i} \times \frac{2-i}{2-1}$ $= \frac{-5-12i}{2+i} \times \frac{2-i}{2-i}$	1 1
	$=\frac{-22-19i}{5}$	1
	$=-\frac{22}{5}-\frac{19}{5}i$	1 Total = 4
(b) (i)	If $3 - 5i$ is a root $\Rightarrow 3 + 5i$ is a root as well.	1
	The sum of the roots = 6	1
	The product of the roots $(3-5i)(3+5i) = 34$	1
	So equation is $z^2 - 6z + 34 = 0$	1 Total = 4
(ii)	$\frac{z^3 - z^2 + 4z + 170}{z^2 - 6z + 34} = z + 5$	1
		1
	So $z = -5;$	
	z = 3 - 5i; $z = 3 + 5$ are solutions.	1 Total = 3

5 (i)	$1 + i\sqrt{3} \Rightarrow = R(\cos \alpha + i \sin \alpha);$	1
	$R = \sqrt{(1)^2 + (\sqrt{3})^2} = 2$	1
	$\alpha = \tan^{-1}(\frac{\sqrt{3}}{1}) = \frac{\pi}{3}$	1 Total = 3
	So $1 + i\sqrt{3} = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$	
(ii)	$(1 + i\sqrt{3})^5 = (2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}))^5$	
	$= 32(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$	1
	= 16 – 27.7 <i>i</i>	1 Total = 2

6	(i)	Locus of points satisfying $ z + 6 = z - 4i $	
		- the perpendicular bisector of the line joining	1
		- the points $(-6, 0)$ and $(0, 4)$	1
			1 Total = 3
	(ii)	The locus of the points satisfying $ z - 1 + 4i = 3$ is	
		: circle centre $(1, -4)$	1
		radius = 3 units	1
			1 I otal =3

7 (i)	$\begin{pmatrix} 1 & 2 & 1 & k \\ 2 & 1 & 4 & 6 \\ 1 & -4 & 5 & 9 \end{pmatrix}$	2 Total = 2
(ii)	$ \begin{pmatrix} 1 & 2 & 1 & k \\ 0 & 3 & -2 & 2k-6 \\ 0 & 6 & -4 & k-9 \end{pmatrix} 2R_1 - R_2 $	1 1
	$\begin{pmatrix} 1 & 2 & 1 & k \\ 0 & 3 & -2 & 2k-6 \\ 0 & 0 & 0 & 3k-3 \end{pmatrix}$	1 Total = 3
(iii)	for consistency of the system : $3k - 3 = 0$	1
	$\Rightarrow k = 1$	1 Total =2
(iv)	let $z = \lambda$	1
	$3y - 2\lambda = -4$	
	$y = \frac{2\lambda - 4}{3}$	1
	$x + 2\frac{(2\lambda - 4)}{3} + \lambda = 1$	
	$x = \frac{11-7\lambda}{3}$	1 Total = 3

8	$2 \begin{vmatrix} k & -1 \\ 4 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} + (k) \begin{vmatrix} 1 & k \\ 3 & 4 \end{vmatrix}$		2 [for two out of thr	ee correct]
		= 0	1	
	$-3k^2 + 8k + 3 = 0$		1	
	$3k^2 - 8k - 3 = 0$			
	(3k+1)(k-3) = 0		1	
	$k = -\frac{1}{3}$ and $k = 3$		1	Total =6