HARRISON COLLEGE INTERNAL EXAMINATIONS 2012: PURE MATHEMATICS [UNIT2 - TEST: 3]

SOLUTIONS AND MARK SCHEME

Question	Working	Marks \& comments
1.(a)	$\begin{aligned} & { }^{12} C_{6} \\ & =924 \end{aligned}$	1 $\text { Total = } 2$
(b)	$\begin{aligned} { }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2} & =180 \\ \text { So required probability } & =\frac{180}{924} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ $\text { Total = } 3$
(b)	$\begin{aligned} & \qquad{ }^{5} \mathrm{C}_{3} \times{ }^{7} \mathrm{C}_{3} \\ & =350 \\ & \text { So required probability } \end{aligned}=\frac{350}{924}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 Total =3

3(a)	Since A and B are independent $\Rightarrow P(A \cap B)=P(A) \times P(B)$ Let $P(B)=x$ $\begin{aligned} & P(A \cup B)=P(A)+P(B)-P(A \cap B) \\ & 0.7=0.6+x-0.6 x \\ & x=0.25 \end{aligned}$	1 1	Total $=4$
(b)	Probability that A or B occurs but not both $\begin{aligned} & =0.6+0.25-2 \times(0.6 \times 0.25) \\ & =0.55 \end{aligned}$	1 1	$\text { Total = } 2$

4 (a)	$\begin{aligned} & \frac{(2-3 i)^{2}}{2+i}=\frac{(2-3 i) \times(2-3 i)}{2+i} \times \frac{2-i}{2-1} \\ & =\frac{-5-12 i}{2+i} \times \frac{2-i}{2-i} \\ & =\frac{-22-19 i}{5} \\ & =-\frac{22}{5}-\frac{19}{5} i \end{aligned}$	1 1 1 1 1	$\text { Total }=4$
(b) (i)	If $3-5 i$ is a root $\Rightarrow 3+5 i$ is a root as well. The sum of the roots $=6$ The product of the roots : $(3-5 i)(3+5 i)=34$ So equation is $z^{2}-6 z+34=0$	1 1 1 1	$\text { Total = } 4$
(ii)	$\frac{z^{3}-z^{2}+4 z+170}{z^{2}-6 z+34}=z+5$ So $z=-5$; $z=3-5 i ; \quad z=3+5$ are solutions.	1 1 1 1	$\text { Total = } 3$

5 (i)	$1+i \sqrt{3} \Rightarrow=R(\cos \alpha+i \sin \alpha) ;$ $R=\sqrt{(1)^{2}+(\sqrt{3})^{2}}=2$ $\alpha=\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{3}$ So $1+i \sqrt{3} \quad=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$	1	
(ii)	$1+i \sqrt{3})^{5}=\left(2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right)^{5}$ $=32\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$ $=16-27.7 i$	1	Total $=3$

\begin{tabular}{|c|c|c|c|}
\hline 6 (i) \& \begin{tabular}{l}
Locus of points satisfying \(|z+6|=|z-4 i|\) \\
- the perpendicular bisector of the line joining \\
- the points \((-6,0)\) and \((0,4)\)
\end{tabular} \& 1 \& Total \(=3\) \\
\hline (ii) \& \begin{tabular}{l}
The locus of the points satisfying \(|z-1+4 i|=3\) is \\
circle centre \((1,-4)\) \\
radius \(=3\) units
\end{tabular} \& 1
1
1

1
1 \& Total $=3$ \\
\hline
\end{tabular}

7 (i)	$\left(\begin{array}{rrrr} 1 & 2 & 1 & k \\ 2 & 1 & 4 & 6 \\ 1 & -4 & 5 & 9 \end{array}\right)$	$2 \quad$ Total $=2$
(ii)	$\begin{aligned} & \left(\begin{array}{cccc} 1 & 2 & 1 & k \\ 0 & 3 & -2 & 2 k-6 \\ 0 & 6 & -4 & k-9 \end{array}\right) 2 R_{1}-R_{2} \\ & \left(\begin{array}{rrrc} 1 & 2 & 1 & k \\ 0 & 3 & -2 & 2 k-6 \\ 0 & 0 & 0 & 3 k-3 \end{array}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ $\text { Total = } 3$
(iii)	for consistency of the system : $3 k-3=0$ $\Rightarrow k=1$	1 Total $=2$
(iv)	$\begin{aligned} & \text { let } z=\lambda \\ & 3 y-2 \lambda=-4 \\ & y=\frac{2 \lambda-4}{3} \\ & x+2 \frac{(2 \lambda-4)}{3}+\lambda=1 \\ & x=\frac{11-7 \lambda}{3} \end{aligned}$	1 1 $\text { Total = } 3$
8	$\begin{aligned} & 2\left\|\begin{array}{rr} k & -1 \\ 4 & 2 \end{array}\right\|-1\left\|\begin{array}{cc} 1 & -1 \\ 3 & 2 \end{array}\right\|+(k)\left\|\begin{array}{cc} 1 & k \\ 3 & 4 \end{array}\right\|=0 \\ & -3 k^{2}+8 k+3=0 \\ & 3 k^{2}-8 k-3=0 \\ & (3 k+1)(k-3)=0 \\ & k=-\frac{1}{3} \quad \text { and } k=3 \end{aligned}$	2 [for two out of three correct] 1 1 1 1 Total $=6$

