HARRISON COLLEGE INTERNAL EXAMINATION 2012 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 3

TIME: $\mathbf{1}$ Hour \& $\mathbf{3 0}$ minutes
This examination paper consists of 2 printed pages.
The paper consists of 8 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. A CARICOM committee of 6 people is to be chosen at random from 12 country representatives.
(a) In how many different ways can the committee be chosen?

The 12 country representatives consist of 5 people from Barbados, 4 from Trinidad and 3 from Jamaica. The committee is to be chosen randomly. Find the PROBABILITY (leaving your answer in fractional form) that the committee will consist of
(b) 2 people from Barbados, 2 from Trinidad and 2 from Jamaica.
(c) exactly 3 people from Barbados.
2. Each of the 8 letters of the word BARBADOS is printed on a separate card. The cards are arranged in a row.
(i) How many different arrangements of the letters are possible?
(ii) In how many of these arrangements are the Bs together?

The 8 cards are now shuffled and 2 cards are selected at random, one at a time, without replacement.
(iii) Find the probability that at least one of these 2 cards has B printed on it. Give your answer in fractional form.
3. The independent events A and B are such that $\mathrm{P}(\mathrm{A})=0.6$ and $P(A \cup B)=0.7$. Find
(a) $\mathrm{P}(\mathrm{B})$.
(b) the probability that either A occurs or B occurs, but not both.
4. (a) Express the complex number $\frac{(2-3 i)^{2}}{2+i}$ in the form $a+i b$ where a and b are real numbers.
(b) (i) Write down the quadratic equation with real coefficients and constant given that one of the roots is $z=3-5 i$.

Give your answer in the form $a z^{2}+b z+c=0$
(ii) Hence, or otherwise, solve $z^{3}-z^{2}+4 z+170=0$ given that $z=3-5 i$ is a solution.
5. (i) Express $1+i \sqrt{3}$ in modulus argument form.
(ii) Hence, by using de Moivre's theorem, find $(1+i \sqrt{3})^{5}$ in the form $a+i b$.
6. Sketch and describe the following loci in separate Argand diagrams
(i) $|z+6|=|z-4 i|$
(ii) $|z-1+4 i|=3$
7. A system of equations is given by

$$
\begin{array}{r}
x+2 y+z=k \\
2 x+y+4 z=6 \\
x-4 y+5 z=9
\end{array}
$$

where k is constant.
(i) Write the augmented matrix of the system.
(ii) Reduce the augmented matrix to echelon form.
(iii) Find the value of k for which the equations are consistent.
(iv) For this value of k, find the general solution of these equations.
8. The matrix \boldsymbol{A} is given by

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 1 & k \\
1 & k & -1 \\
3 & 4 & 2
\end{array}\right)
$$

Find the values of k for which \boldsymbol{A} is singular.

