SOLUTIONS

1. (a) ${ }^{18} C_{7}=31824$
(b) number of ways of choosing a committee with 2 from St.Michael, 2 from St. Lucy and 3 from St.John

$$
\begin{equation*}
{ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{3}=5250 \tag{2}
\end{equation*}
$$

So required probability $=\frac{5250}{31824}$
(c) number of ways of choosing a committee with 3 people from St. John $={ }^{7} C_{3} \times{ }^{11} C_{4}=11550[2]$

So required probability $=\frac{11550}{31824}$
2. (i) number of different arrangements $=\frac{8!}{3!\times 2!}=3360$
(ii) number of arrangements with Rs together $=\frac{7!}{3!}=840$
(iii) $\operatorname{Pr}\left(R\right.$ and $\left.R^{\prime}\right)+\operatorname{Pr}\left(R^{\prime}\right.$ and $\left.R\right)+\operatorname{Pr}(R$ and $R)=$

$$
\begin{equation*}
\left(\frac{2}{8} \times \frac{6}{7}\right)+\left(\frac{6}{8} \times \frac{2}{7}\right)+\left(\frac{2}{8} \times \frac{1}{7}\right)=\frac{26}{56}=\frac{13}{28} \tag{4}
\end{equation*}
$$

3. (a) Since A and B are independent $\Rightarrow P(A \cap B)=P(A) \times P(B)$

$$
\begin{align*}
& \text { Let } \mathrm{P}(\mathrm{~B})=x \\
& \qquad \begin{array}{l}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.9=0.5+x-0.5 x \\
x=0.8
\end{array}
\end{align*}
$$

(b) Probability that A or B occurs but not both $=0.5+0.8-(0.5 \times 0.8)=0.9$
4. (a) $\frac{(1+2 i)^{2}}{7-i}=\frac{(1+2 i) \times(1+2 i)}{7-i} \times \frac{7+i}{7+1}=\frac{-3+4 i}{7-i} \times \frac{7+i}{7+i}=\frac{-25+25 i}{50}=-\frac{1}{2}+\frac{1}{2} i$
(b) If $1-i$ is a root then $\Rightarrow 1+i$ is a root as well.

The sum of the roots $=-1$

$$
\begin{align*}
& (1-i)+(1+i)+x=-1 \text { where } x \text { is the third root. } \tag{1}\\
& x=-3
\end{align*}
$$

5. (i) $-\frac{1}{2}+i \frac{\sqrt{3}}{2} \Rightarrow \quad=R(\cos \alpha+i \sin \alpha) ; \mathrm{R}$ is the modulus and α is the principal argument

$$
\begin{equation*}
R=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=\pi-\tan ^{-1} \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \tag{2}
\end{equation*}
$$

$$
\text { So }-\frac{1}{2}+i \frac{\sqrt{3}}{2}=1\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)
$$

(ii) $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}=1^{3}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{3}=\cos 2 \pi+i \sin 2 \pi=1$
6. (i) Locus of points satisfying $|z+4|=|z-8 i|$ is:

> - the perpendicular bisector of the line joining - the point $(-4,0)$ and $(0,8)$

(ii) The locus of the points satisfying $|z-5+2 i|=5$ is:

- A circle centre $(5,-2)$
[1]
[1]

7. (i) $\left(\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 2 & 1 & -1 & -1 \\ 1 & 2 & 4 & k\end{array}\right)$
(ii) $\left(\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & -1 & -4 & -k\end{array}\right)$

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \tag{2}\\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1-k
\end{array}\right)
$$

[3]
(iii) for consistency of the system : $1-k=0 \Rightarrow k=1$
(iv) let $z=\lambda$

$$
\begin{align*}
& y+3 \lambda=1 \\
& y=1-3 \lambda \tag{1}\\
& x+(1-3 \lambda)+\lambda=0 \\
& x=2 \lambda-1 \tag{2}
\end{align*}
$$

8. $\quad 1\left|\begin{array}{ll}0 & 2 \\ k & 6\end{array}\right|-2\left|\begin{array}{cc}3 & 2 \\ -1 & 6\end{array}\right|+(-1)\left|\begin{array}{cc}3 & 0 \\ -1 & k\end{array}\right|=0$
$-2 k-2(20)-3 k=0$
$k=-8$
