HARRISON COLLEGE INTERNAL EXAMINATION 2012 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 1

TIME: $\mathbf{1}$ Hour \& $\mathbf{3 0}$ minutes
This examination paper consists of 2 printed pages.
The paper consists of 7 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. (a) Solve $\log _{4} x+6 \log _{x} 2=4$,
(b)

The diagram above (not drawn to scale) shows the graph of $y=\log _{2} x$ between $x=1$ and $x=8$. The shaded region, bounded by $y=\log _{2} x$, the line $y=3$, and the x and y axes, is rotated about the y-axis to form a solid.
(i) Show that the volume of the solid formed is given by $V=\pi \int_{0}^{3} e^{y \ln 4} d y$.
(ii) Hence find the value for the volume of the solid in the form $\frac{a}{\ln b} \pi$ where a and b are real numbers.
2. The Barbados Water Authority has a reservoir which is to be partly refilled by water supplied by a desalination plant. The desalinated water contains a small quantity of salt and it has been determined that the differential equation

$$
\frac{d Q}{d t}=5-\frac{Q}{10}
$$

where Q is the quantity of salt, in kg , in the reservoir on any day and t is the time in days, describes the rate of change of salt in the reservoir.

Assume there was no salt in the reservoir originally; solve this differential equation to find Q , the quantity of salt in the reservoir at any time t.
3.

Find $\frac{d y}{d x}$ when:
(i) $y=(\ln x) \sin ^{-1}(2 x)$
(ii) $y=\frac{x}{e^{2 x}}$
4. (a) Given $x=\sqrt{t}$ and $y=t^{3}-\frac{5 t^{2}}{2}$ for $t>0$
(i) Obtain a simplified expression in terms of t for $\frac{d y}{d x}$.
(ii) Show that $\frac{d^{2} y}{d x^{2}}=a t^{2}+b t$, determining the values of the constants a and b.
(iii) Find the equation of the tangent to the curve at the point where $t=4$.
(b) Find the gradient of the curve given by $2 \sin (x y)=1$, when $y=\frac{1}{2} \quad$ and $x=\frac{5 \pi}{3}$. [4]
5. It is given that $f(x)=\frac{x^{2}+9 x}{(x-1)\left(x^{2}+9\right)}$
(i) Express $f(x)$ in partial fractions.
(ii) Hence find $\int f(x) d x$
6. (i) Use the substitution $x=\sin \theta$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x \tag{6}
\end{equation*}
$$

(ii) Using integration by parts, find the exact value of $\int_{1}^{3} \frac{\ln x}{x^{2}} d x$.
7.

The shaded region in the diagram above is bounded by the curve $f(x)=\sqrt{x^{2}+4}$,
the x-axis and the lines $x=0$ and $x=6$.
Use the trapezium rule with three intervals of equal width to estimate the area of the shaded region.

