Preview Unit 2 Test 3

1. A bag contains 9 discs numbered $1,2,3,4,5,6,7,8,9$.
i. Andrea chooses 5 discs at random, without replacement, and places them in a row.
a) How many different 5 -digit numbers can be made?
b) How many different ODD 5-digit numbers can be made?
ii. Andrea's 5 discs are put back in the bag. Martin chooses 5 discs at random, without replacement. Give your answers as EXACT values, find the probability that
a) The 5 digits include at least 4 odd digits
b) The 5 digits add up to 33.
2. a) Find the general solution of the differential equation

$$
x \frac{d y}{d x}+2 y=4 x^{2}
$$

[7]
b) Hence, find the particular solution for which $y=5$ at $x=1$, giving your answer in the form $y=$ $f(x)$.
3. Given the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-8 y=e^{-x}
$$

Find
(a) its complementary function
(b) its particular integral
(c) its general solution

Given that $y=0$ and $\frac{d y}{d x}=0$ when $x=0$.
(d) Find the particular solution for the differential equation
4. $A=\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 1 & 1 \\ 5 & 3 & u\end{array}\right)$
(a) Show that $|A|=2(u-$ 1)
(b) Hence, find the value of u if A is a singular matrix.

Given that A is a non-singular matrix
(c) find A^{-1}, in terms of u, using the cofactors method.
5. $x-2 y+3 z=4$
$2 x+y-4 z=3$
$-3 x+4 y-z=-2$
For the system of equations above
(a) Write the augmented matrix.
(b) Reduce the augmented matrix obtained to echelon form.
(c) Solve for x, y and
z.

Answers
Question 1
i.
(a) 15120
(b) 8400
ii.
(a) $\frac{1}{6}$
(b) $\frac{1}{63}$

Question 2

(a) $y=x^{2}+\frac{c}{x^{2}}$
(b) $y=x^{2}+\frac{4}{x^{2}}$

Question 3
(a) $y=A e^{-4 x}+B e^{2 x}$
(b) $y=-\frac{1}{5} e^{-x}$
(c) $y=A e^{-4 x}+B e^{2 x}-\frac{1}{5} e^{-x}$
(d) $y=\frac{1}{10} e^{-4 x}+\frac{1}{10} e^{2 x}-\frac{1}{5} e^{-x}$

Question 4
(b) $u=1$
(c) $\frac{1}{2(u-1)}\left(\begin{array}{ccc}u-3 & -u-3 & 2 \\ 5-u & 3 u+5 & -4 \\ -2 & -4 & 2\end{array}\right)$

Question 5
(a) $\left(\begin{array}{ccr|r}1 & -2 & 3 & 4 \\ 2 & 1 & -4 & 3 \\ -3 & 4 & -1 & -2\end{array}\right)$
(b) $\left(\begin{array}{rrr|r}1 & -2 & 3 & 4 \\ 0 & 5 & -10 & -5 \\ 0 & 0 & 20 & 40\end{array}\right)$
(c) $x=4 y=3 z=2$

