1)) Write down the $n^{\text {th }}$ term of the sequence $3,7,11,15, \ldots$
b) Hence, show that the sum of the first n terms of the series $3^{2}+7^{2}+11^{2}+15^{2}+\cdots$ is given by

$$
\begin{equation*}
\frac{1}{3} n\left(16 n^{2}+12 n-1\right) \tag{8}
\end{equation*}
$$

2) The first three terms of a geometric sequence are $\cos x, \sin 2 x$ and $4 \cos x \sin ^{2} x$,
a) Find the common ratio r, in its simplest form.

Given that $x=\sin ^{-1}\left(\frac{1}{4}\right), x>0$
b) Show that the sum to infinity of the series is $\frac{\sqrt{15}}{2}$.
3) a) Given that

$$
f(r)=r!
$$

show that

$$
\begin{equation*}
f(r+2)-f(r+1)=(r+1)^{2} \times r! \tag{3}
\end{equation*}
$$

b) Hence find

$$
\begin{equation*}
\sum_{r=1}^{n}\left[(r+1)^{2} \times r!\right] \tag{5}
\end{equation*}
$$

4) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+5 y=0$
a) Find an expression for $\frac{d^{3} y}{d x^{3}}$ in terms of $\frac{d^{2} y}{d x^{2}}, \frac{d y}{d x}$ and y.

Given that $y=2$ and $\frac{d y}{d x}=2$ at $x=0$.
b) Find the power series for y, in ascending powers of x, up to and including the term in x^{3}.
5) $f(x)=(1+5 x)^{-1},|x|<\frac{1}{5}$.
a) Expand $f(x)$ in ascending powers of x up to and including the term in x^{3}.
b) Hence show that,

$$
\begin{equation*}
\frac{1+x}{1+5 x} \approx 1-4 x+20 x^{2}-100 x^{3} \tag{3}
\end{equation*}
$$

c) By taking a suitable value for x, which should be stated, use the series expansion in part b) to find an approximate value for $\frac{101}{105}$, giving your answer to 5 decimal places.
6) The figure below shows the graph of $y=2 \cos x$ and $y=e^{x}$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Given that $f(x)=e^{x}-3 \cos x$
a) Write down the number of solutions of the equation $f(x)=0$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
b) Show that the equation $f(x)=0$ has a solution, α, in the interval $[0,1]$.
c) Using 0.7 as a first approximation to α, use the Newton-Raphson process once to find an improved estimate for α, giving your answer correst to 2 decimal places.

There is another root, β, of the equation $f(x)=0$ in the interval $[-2,-1]$.
d) Use linear interpolation once on this interval to estimate the value of β, giving your answer correct to 2 decimal places.

Answers

Question 1

a) $4 n-1$
b) $\frac{1}{3} n\left(4 n^{2}+15 n+8\right)$

Question 2
a) $2 \sin x$
b)

Question 3
b) $(n+2)!-2$

Question 4
a) $\frac{d^{3} y}{d x^{3}}=\frac{-3 \frac{d^{2} y}{d x^{2}}\left(\frac{d y}{d x}\right)-5 \frac{d y}{d x}}{y}$
b) $y=2+2 x-\frac{7}{2} x^{2}+\frac{8}{3} x^{3}$

Question 5
a) $1-5 x+25 x^{2}-125 x^{3}$
c) 0.96190

Question 6
a) 2 solutions
c) 0.77
d) -1.48

