Preview Unit 2 Test 2

1. A geometric progression has first term $\log _{3} 16$ and common ratio $\log _{3} x$.
(a) Find the set of values of x for which the geometric progression has a sum to infinity.
(b) Find the EXACT value of x for which the sum to infinity of the geometric progression is 4.
2. (a) Write down the first four terms of Maclaurin expansion for $\ln (1+x)$.
(b)Hence, determine the first four terms for the expansion of $\ln \left(1+x^{3}\right)$.
(c)By using your result from (i) find the EXACT value of

$$
\begin{equation*}
1-\frac{1}{2}\left(\frac{1}{3}\right)^{3}+\frac{1}{3}\left(\frac{1}{3}\right)^{6}-\frac{1}{4}\left(\frac{1}{3}\right)^{9}+\cdots \tag{5}
\end{equation*}
$$

3. (a) Express $\frac{2}{(r+2)(r+4)}$ in partial fractions.
(b) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{2}{(r+2)(r+4)}=\frac{n(a n+b)}{12(n+3)(n+4)} \tag{8}
\end{equation*}
$$

where a, and b are constants to be found.
(c) Hence show that

$$
\begin{equation*}
\sum_{r=n+1}^{2 n} \frac{2}{(r+2)(r+4)}=\frac{24 n^{3}+126 n^{2}+150 n}{12(n+2)(n+3)(n+4)(2 n+3)} \tag{5}
\end{equation*}
$$

4. (a) Find the binomial expansion of $\sqrt{1-4 x}$, in ascending powers of x up to and including the term in x^{3}, simplifying each term.
(b) State the values of x for which the expansion is valid.
(c) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and obtain an approximation to $\sqrt{6}$. Give your answer correct to 5 decimal places.
5. (a) Show that $\frac{d}{d x}\left(3^{x}\right)=3^{x} \ln 3$
(b) Given that $f(x)=3^{x}-x-6$
i. Show that the equation $f(x)=0$ has a root α in the interval[1,2].
ii. Use linear interpolation in the interval $[1,2]$ to find an approximation to α. Give your answer as an EXACT value.
iii. Taking $x_{1}=1$ as a first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to obtain a second approximation to α. Give your answer to $\mathbf{3}$ decimal places.

Answers
Question 1
(a) $\frac{1}{3}<x<3$
(b) $x=\frac{3}{2}$

Question 2
(a) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$
(b) $x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\frac{x^{12}}{4}+\cdots$
(c) $27 \ln \frac{28}{27}$

Question 3
(a) $\frac{1}{r+2}-\frac{1}{r+4}$
(b) $\frac{n(7 n+25)}{12(n+3)(n+4)}$

Question 4

(a) $1-2 x-2 x^{2}-4 x^{3}$
(b) $-\frac{1}{4}<x<\frac{1}{4}$
(c) 2.44949

Question 5
ii. $\frac{9}{5}$
iii. $\quad 1.887$

