HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2015
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 TEST 2
 1 hour 20 minutes

This examination paper consists of $\mathbf{2}$ printed pages.
This paper consists of $\mathbf{8}$ questions.
The maximum mark for this examination is 53.

INSTRUCTIONS TO CANDIDATES

(i) Write in ink
(ii) Write your name clearly on each sheet of paper used
(iii) Answer ALL questions
(iv) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(v) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) A sequence of positive integers $u_{1}, u_{2}, u_{3}, \ldots$ is given by $u_{1}=2$ and $u_{n+1}=2 u_{n}$ for $n \geq 1$.
(i) Write down the first four terms of this sequence.
(ii) State what type of sequence this is, and express u_{n} in terms of n.
2) Dominique has been a marathon runner for many years. She ran her first marathon in approximately 5 hours. She trained intensively and each marathon she was able to decrease her time by 2.5%.
(i) Approximately how many hours should it take Dominique to complete her $8^{\text {th }}$ marathon?
(ii) How many hours in total would she have run after she completed her $8^{\text {th }}$ marathon?
(iii) Her ultimate goal is to run a marathon in 4 hours. If she maintains her training schedule, how long should it take her to accomplish her goal? (Round off to the nearest marathon.)
3) Use Maclaurin's Theorem to expand the function $e^{\cos x}$, in ascending powers of x as far as the term in x^{2}.
4) Using the Taylor series, expand y up to terms in $(x-1)^{3}$, where $\frac{d^{2} y}{d x^{2}}+y \frac{d y}{d x}=x$ given that $y=0$ and $\frac{d y}{d x}=1$ at $x=1$.
5) Without expanding $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}$ completely, find
(i) the term independent of x
(ii) the coefficient of x^{6}.
6) Given $f(x)=e^{x}-2 x^{2}$
(i) Show that the equation $f(x)=0$ has a root α in the interval $[-1,0]$.
(ii) By taking an initial approximation to α to be -0.5 , use the Newton-Raphson method to find a second approximation to α, giving your answer correct to 3 significant figures.
7) (i) Express $\frac{1}{(r+3)(r+1)}$ in partial fractions.
(ii) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{2}{(r+3)(r+1)}=\frac{n(5 n+13)}{6(n+2)(n+3)} \tag{5}
\end{equation*}
$$

8) Prove by the method of mathematical induction that $(1+x)^{n} \geq 1+n x$ for $n \geq 0$.

ANSWERS

1) (i) $2,4,8,16$ (ii) geometric; $u_{n}=2^{n}$
$\begin{array}{lll}\text { 2) (i) } 4.2 \mathrm{hrs} & \text { (ii) } 36.7 \mathrm{hrs} & \text { (iii) approx } 10 \text { marathons }\end{array}$
2) $e-\frac{e^{2}}{2} x^{2}$
3) $f(x)=(x-1)+\frac{(x-1)^{2}}{2!}$
4) (i) $\frac{7}{18}$ (ii) $\frac{189}{16}$
5) -0.541
6) $\frac{1}{2(r+1)}-\frac{1}{2(r+3)}$
