SBA preview Unit 2 Test 1 (2018)

1. The complex number 3+2i is denoted by z.

Find

- i. |*z*|
- ii. arg z
- iii. $\frac{z}{4-i}$

2. The loci C_1 and C_2 are given by $\arg(z+2i) = \frac{1}{4}\pi$ and |z| = |z-8| respectively

- i. Sketch on a single Argand diagram the loci C_1 and C_2 .
- ii. Indicate, by shading, the region of the Argand diagram for which $0 \le \arg(z+2i) \le \frac{1}{4}\pi$ and $|z| \le |z-8|$
- 3. Given that

$$x = \csc^2 2y$$
, $0 < y < \frac{\pi}{6}$

- a) Find $\frac{dx}{dy}$ in terms of y.
- b) Hence show that

$$\frac{dy}{dx} = -\frac{1}{4x(x-1)^{\frac{1}{2}}}$$

4. Given that

$$f(x) = \frac{3x^2 + 16}{(2+x)^2(1-3x)} , |x| < \frac{1}{3}$$

a) Express $f(x)$ as a sum of partial fractions [6]

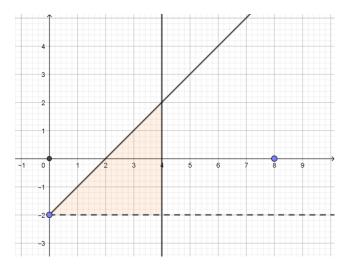
b) Hence find $\int f(x) dx$

5.

$$f(x) = (x^2 + 1)ln x$$
, where $x > 0$

- i. Use differentiation to find the value of f'(x) at x = e, leaving your answer in terms of e.
- ii. Find the exact value of $\int_1^e f(x) dx$

[6] [6. Use the substitution $u = 3^x$ to find the exact value of $\int_0^1 \frac{3^x}{(3^x+1)^2} dx$


Answers

Question 1

i.	$\sqrt{13}$
ii.	0.588 rad
 111.	$\frac{4+7i}{5}$

111.

Question 2

a) $-4\csc^2 2y\cot 2y$

Question 4

a)
$$\frac{3}{1-3x} + \frac{4}{(2+x)^2}$$

b) $-\ln|1-3x| - \frac{4}{2+x} + c$

Question 5

i.
$$3e + \frac{1}{e}$$

ii. $\frac{2}{9}e^3 + \frac{10}{9}$

Question 6

 $\frac{1}{2\ln 3} - \frac{1}{4\ln 3}$