HARRISON COLLEGE INTERNAL EXAMINATION 2016
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 PREVIEW
 PURE MATHEMATICS
 UNIT 2 - TEST 1
 1 hour 20 minutes

This examination paper consists of 2 pages.
This paper consists of 3 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (a) (i) Show that $\frac{d y}{d x}=-1$ at the point $A\left(1, \frac{1}{2}\right)$ on the curve

$$
\begin{equation*}
x+2 y-\tan ^{-1}(2 y)=2-\frac{1}{4} \pi \tag{3}
\end{equation*}
$$

(ii) Find the value of $\frac{d^{2} y}{d x^{2}}$ at A. [Ans: -2]
(b) The curve C is defined parametrically by

$$
\begin{equation*}
x=t^{2}-2 \ln t, \quad y=4(t-1) \quad t \in \mathbb{R} \quad t \geq 1 \tag{5}
\end{equation*}
$$

Find $\frac{d^{2} y}{d x^{2}}$ in terms of $t . \quad\left[\right.$ Ans: $\left.\frac{-t\left(t^{2}+1\right)}{\left(t^{2}-1\right)^{3}} \quad\right]$
(c) Given that $z=e^{x^{2}-x y}$, show that

$$
\begin{equation*}
\frac{1}{z} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}=\frac{\partial^{2} z}{\partial y \partial x}+z \tag{5}
\end{equation*}
$$

Total: $\mathbf{1 7}$ marks
2. (a) Find (i) $\int x^{2} \cos 3 x d x \quad$ [Ans : $\frac{x^{2}}{3} \sin 3 x+\frac{2}{9} x \cos 3 x-\frac{2}{27} \sin 3 x+$ constant]
(ii) $\int \frac{x}{\sqrt{1-49 x^{4}}} d x \quad\left[\right.$ Ans: $\frac{1}{14} \sin ^{-1}\left(7 x^{2}\right)+$ constant $]$
(b) Let $f(x)=\frac{3 x^{2}+5 x+4}{x(x+1)^{2}}$
i. Express $f(x)$ in partial fractions. [Ans: $f(x)=\frac{4}{x}-\frac{1}{(x+1)}-\frac{2}{(x+1)^{2}}$]
ii. Hence show that $\int_{1}^{2} f(x) d x=\ln \frac{32}{3}-\frac{1}{3}$.
(c) Use the trapezium rule with 4 strips to find an approximation to

$$
\int_{0}^{\frac{2 \pi}{3}} \sqrt{\cos \left(\frac{1}{2} x\right)} d x
$$

giving your answer to 2 decimal places.
[Ans: 1.89]

Total: $\mathbf{2 2}$ marks

3. (a) Given $|z|=2 \sqrt{5}$ find the complex number z that satisfies the equation

$$
\begin{equation*}
\frac{25}{z}-\frac{15}{z^{*}}=1-8 i \quad[\text { Ans: } \mathrm{z}=2+4 i] \tag{5}
\end{equation*}
$$

(b) (i) Solve the equation $z^{3}=1+\sqrt{3} i \quad$ [Ans: $z=\sqrt[3]{2} e^{\frac{\pi}{9}}, \sqrt[3]{2} e^{\frac{7 \pi}{9}}, \sqrt[3]{2} e^{\frac{-5 \pi}{9}}$] giving your answers in the form $r e^{i \theta}$ where $r>0$ and $-\pi<\theta \leq \pi$.
(ii) Illustrate your values from b (i) on an Argand diagram.
(c) The point P represents a complex number z on an Argand diagram, where

$$
|z-2|=\sqrt{2}|z-4 i|
$$

Show that the locus of P is a circle, stating the coordinates of the centre and the radius of this circle.
[Ans; $\left.(x-2)^{2}+(y-8)^{2}=40\right]$

