PURE MATHEMATICS PREVIEW
 UNIT 2 - TEST 1
 1 hour 20 minutes

1. A botanist is studying the regeneration of an area of moorland following a fire. The total biomass in the area after t years is denoted by M tonnes and two models are proposed for the growth of M.

Model A is given by

$$
M=900-\frac{1500}{3 t+2}
$$

Model B is given by

$$
M=900-\frac{1500}{2+5 \ln (t+1)}
$$

For each model, find
(a) the value of M when $t=4$
(b) the rate at which the biomass is increasing when $t=4$.
(c) Which model would regenerate the area of moorland faster?
2. Given the experimental heat equation $u(x, t)=e^{-k^{2} t} \sin x$
(a) Find
i. $\frac{\partial u}{\partial t}$
ii. $\frac{\partial^{2} u}{\partial x^{2}}$
(b) Hence determine if the experimental equation satisfies the theoretical heat equation $\frac{\partial u}{\partial t}=k^{2} \frac{\partial^{2} u}{\partial x^{2}}$

Total 5 marks
3. Determine $\int_{0}^{2} \tan ^{-1} x$
4. (a) Copy and complete the table below for the equation $y=\frac{3 \sin 2 x}{2+\cos x}$. Give your answers to 5 decimal places.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.10819		0

(b) Use the trapezium rule, with all the values of y in the completed table, to solve

$$
\int_{0}^{\frac{\pi}{2}} \frac{3 \sin 2 x}{2+\cos x}
$$

giving your answer to 4 decimal places.
(c) Using the substitution $u=2+\cos x$ show that

$$
\begin{equation*}
\int \frac{3 \sin 2 x}{2+\cos x}=12 \ln (2+\cos x)-6 \cos x-12+c \tag{5}
\end{equation*}
$$

(d) Hence calculate the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{3 \sin 2 x}{2+\cos x} \tag{2}
\end{equation*}
$$

(e) State, to 2 significant figures, the difference between the exact value in (d) and the approximate value in (b).

Total 13 marks
5. (a) Use DeMoivre's Theorem to prove that

$$
\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta
$$

(b) Given the complex numbers $z_{1}=4+3 i, z_{2}=3+4 i, z_{3}=a+b i$ where $a, b \in \mathbb{R}$
(i) Find the exact value of $\left|z_{1}+z_{2}\right|$ in the form $x \sqrt{2}$.

Given that $w=\frac{z_{1} z_{3}}{z_{2}}$
(ii) find w in terms of a and b, giving your answer in the form $x+y i$, $x, y \in \mathbb{R}$
Given also that $w=\frac{2}{5}-\frac{-11}{5} i$
(iii) find the values of a and b.
(iv) find $\arg w$, giving your answer in radians to 3 decimal places. [2]

