1. (a) (i) Differentiate $f(x)=\sin ^{-1} 3 x$.
(ii) Differentiate $y=\frac{\ln 2 x}{\tan ^{-1} x}$
(b) The curve C is defined parametrically by

$$
\begin{equation*}
x=t(t-1), \quad y=\frac{4 t}{1-t}, \quad t \neq 1 \tag{6}
\end{equation*}
$$

Find the equation of the tangent to the curve at $t=-1$
(c) Consider the curve defined by $4 \cos x+\sin y=3$, show that $\frac{d y}{d x}=\frac{4 \sin x}{\cos y}$.
(d) Let $(x, y)=4 x^{2}+3 x y^{2}+7 x+3 y$, find $\frac{\partial^{2} f}{\partial x \partial y}$.

Total: 17 marks
2. (a) Find $\int \frac{1}{\sqrt{5-4 x-x^{2}}} d x$
(b) Let $f(x)=\frac{x^{2}+2 x+3}{(x-1)\left(x^{2}+1\right)} 2 \leq x \leq 5$
i. Express $f(x)$ in partial fractions.
ii. Hence find $\int_{2}^{5} f(x) d x$.
(c) It is given that for $n \geq 0$

$$
\begin{equation*}
I_{n}=\int_{0}^{1} x^{n} e^{-x} d x \tag{3}
\end{equation*}
$$

(i) Prove that for $n \geq 1, \quad I_{n}=n I_{n-1}-e^{-1}$.
(ii) Find the exact value of I_{3}.
(d) Use the trapezium rule with 4 strips to find an approximation to

$$
\int_{3}^{7} 2-3 x^{\frac{1}{2}} d x
$$

giving your answer to 2 decimal places.
Total: 24 marks
3. (a) Showing all necessary working, express the complex number $\frac{1+3 i}{4+2 i}$ in the form $r e^{i \theta}$ where $r>0$ and $-\pi<\theta \leq \pi$.
(b) The complex number $2 i$ is denoted by u.

It is given that u is root of the equation $x^{3}+a x^{2}+b x-12=0$, where the constants a and b are real. Find the values of a and b.
(c) The complex number u is given by $u=8+6 i$.

Find the two square roots of u.
Give your answers in the form $a+i b$, where a and b are exact.
(d) On an Argand diagram sketch the locus of points representing complex numbers Z satisfying the equation $|z-3-5 i|=1$. Find the least value of $|z|$ for points on this locus, giving your answer in an exact form.

