HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2018 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 1 – TEST 1 (PREVIEW) 1 hour 20 minutes

This examination paper consists of **2** printed pages. This paper consists of **9** questions. The maximum mark for this examination is **60**.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer **ALL** questions
- (iii) Number your questions identically as they appear on the question paper and do **NOT** write your solutions to different questions beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

- (a) Mathematical formulae
- (b) Scientific calculator (non-programmable, non-graphical)
- Given that *a* and *b* are propositions, use the <u>algebra of propositions</u> to fully simplify
 (*a*∧*b*)∨(~*a*∧*b*)
 [3]

Total: 3 marks

2) (a) (i) Express in terms of n, $\sum_{r=1}^{n+1} (2r)$. [3] (ii) Given that $\sum_{r=1}^{n+1} (2r) = 42$, find the possible value(s) of n. [4]

(b) Determine the values of *a* and *b* such that
$$\frac{5\sqrt{3}-2}{3-\sqrt{3}} \equiv a+b\sqrt{3}$$
. [4]

Total: 11 marks

3) (i) Given $f(x) = x^3 + bx^2 + cx + 8$ is divisible by both (x + 1) and (x - 2), find the values of *b* and *c*.

(ii) Hence, with these values of b and of c, solve f(x) = 0. [4]

Total: 8 marks

4) Prove by mathematical induction that
$$\sum_{r=1}^{n} \frac{1}{(4r-3)(4r+1)} = \frac{n}{4n+1} \quad \forall n \in \mathbb{N}.$$
 [6]

Total: 6 marks

P.T.O

[4]

5) (a) Solve for x , $2log_2x - log_x^2 = 1$.	[4]
(b) Solve for x the equation $e^{x} + 4e^{-x} = 4$, giving your answer in terms of log	gs. [4]
	Total: 8 marks
6) The number of ants, N, on a tree initially was 30 000.	
The number of ants after <i>n</i> days was found to be directly proportional to $\left(\frac{1}{2}\right)$,
Calculate estimates of	
(i) the number of ants after 5 days	[2]
(ii) the day on which the population is expected to reach 200.	[4] Total: 6 marks
7) (a) The function f is defined by f: $x \rightarrow ln (x-4)$.	
(i) Sketch the graph of <i>f</i> , showing clearly any intersection with the axes. (ii) Determine an expression for the inverse function, $f^{-1}(x)$.	[2] [3]
(b) The function g is defined by g: $x \rightarrow e^x + 3$.	
Determine $gf(x)$, simplifying your answer.	[2] Total: 7 marks
8) Find the range of values of x for which $\frac{2x+3}{3x-2} + 2 \le 0$, $x \ne \frac{2}{3}$.	[5]
	Total: 5 marks
9) Solve for $x \in \mathbf{R}$, $2x^2 - x - 3 = 0$.	[6]
	Total: 6 marks

SOLUTIONS – PREVIEW CAPE 2018: UNIT 1 TEST 1

(ii) $e^{x} + 4 = f^{-1}(x)$ (b) x - 18) $\frac{1}{8} \le x < \frac{2}{3}$

9) $x = \pm \frac{3}{2}$