Preview test

1. A sequence is given by

$$
\begin{aligned}
& x_{1}=1 \\
& x_{n+1}=x_{n}\left(p+x_{n}\right)
\end{aligned}
$$

where p is a constant $(p \neq 0)$.
(i) Find x_{2} in terms of p.
(ii) Show that $x_{3}=1+3 p+2 p^{2}$

Given that $x_{3}=1$,
(iii) find the value of p.
2. A boy saves some money over a period of 60 weeks. He saves $\$ 10$ in week $1, \$ 15$ in week $2, \$ 20$ in week 3 and so on until week 60 . His weekly savings form an arithmetic sequence.
a) Find how much he saves in week 15
b) Calculate the total amount he saves over the 60 week period.
3. A series of positive integers $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2 \text { and } u_{n+1}=5 u_{n}-4, \text { for } n \geq 1 .
$$

Prove by induction that $u_{n}=5^{n-1}+1$, for $n \geq 1$.
4. a) Express $\frac{1}{r(r+2)}$ in partial fractions.
b) Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} \frac{4}{r(r+2)}=\frac{n(a n+b)}{(n+1)(n+2)}
$$

c) Find, to 4 decimal places, the value of

$$
\sum_{r=51}^{100} \frac{4}{r(r+2)}
$$

5. a) Write down and simplify the first three non-zero terms of the Maclaurin series for $\ln (1+2 x)$.
b) Hence find the first three non-zero terms of the Maclaurin series for $e^{2 x} \ln (1+2 x)$, simplifying the coefficients.
6. a) Use the binomial series to expand $\frac{1}{\sqrt[3]{8-5 x}}$, where $|x|<\frac{8}{5}$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+2}{\sqrt[3]{8-5 x}}$ as a series in ascending powers of x.
7.

$$
f(x)=3 x^{2}+x-\tan \left(\frac{x}{2}\right)-2
$$

a) Show that the equation $f(x)=0$ has a root α between 0.7 and 0.8
b) Use linear interpolation once, to obtain an approximation to α. Give your answer to 3 decimal places.
c) Taking 0.75 as your first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.

Question 5

Question 1

a) $2 x-2 x^{2}+\frac{8}{3} x^{3}$
(i) $x_{2}=p+1$
b) $2 x+2 x^{2}+\frac{8}{3} x^{3}$
(iii) $p=-\frac{3}{2}$

Question 2
a) $\$ 80$
a) $\frac{1}{2}+\frac{5}{48} x+\frac{25}{576} x^{2}$
b) $\$ 9450$
b) $1+\frac{17}{24} x+\frac{55}{288} x^{2}$

Question 4 Question 7
b) 0.740
a) $\frac{1}{2 r}-\frac{1}{2(r+2)}$
c) 0.741
b) $\frac{n(3 n+5)}{(n+1)(n+2)}$
c) 0.0383

