CAPE UNIT 2 (2016-2017)
TEST 3 (PREVIEW)

1. Given that $A=\left(\begin{array}{ccc}6 & 8 & -4 \\ -1 & -1 & 1 \\ -8 & -12 & 6\end{array}\right)$ and $B=\left(\begin{array}{ccc}3 & 0 & 2 \\ -1 & 2 & -1 \\ 2 & 4 & 1\end{array}\right)$,
(a) Show that A is a non - singular matrix.
(b) Determine $A B$.
(c) Hence, deduce A^{-1}, the inverse of A.
(d) Use A^{-1} to solve the system of equations

$$
\begin{gathered}
6 x+8 y-4 z=-6 \\
-x-y+z=2 \\
-8 x-12 y+6 z=10
\end{gathered}
$$

$$
\text { (a) }|A|=-2 \text { (b) }\left(\begin{array}{lll}
2 & 0 & 0 \tag{3}\\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \text { (c) } \frac{1}{2}\left(\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 2 & -1 \\
2 & 4 & 1
\end{array}\right) \text { (d) }\{x, y, z\}=\{1,0,3\}
$$

2. Given the following system of equations

$$
\begin{gathered}
x+2 y-z=-1 \\
x-y+3 z=4 \\
2 x+z=0
\end{gathered}
$$

(a) Write the system as an augmented matrix.
(b) Use row reduction to solve the system of equations.
(c) Determine the general solution if the last equation of the system was replaced by $2 x-2 y+6 x=8$.

$$
\begin{equation*}
\text { (b) }\{x, y, z\}=\{-1,1,2\} \text { (c) } z=t, y=\frac{4}{3} t-\frac{5}{3}, z=-\frac{5}{3} t+\frac{7}{3} \tag{3}
\end{equation*}
$$

3. (a) (i) Solve the differential equation $\frac{d y}{d t}=y \cos t$ to obtain y in terms of t.
(ii) Given that $y=50$ when $t=\frac{\pi}{2}$, show that $y=50 e^{-(1-\sin t)}$.
(b) A wave machine at a leisure pool produces waves. The height of the water, $y \mathrm{~cm}$, above a fixed point at time t seconds is given by the differential equation

$$
\frac{d y}{d t}=y \cos t
$$

Given that this height is 50 cm after $\frac{\pi}{2}$ seconds, find, to the nearest centimeter, the height of the water after 6 seconds.
4. Find the general solution of the differential equation

$$
\frac{d y}{d x}+2 y \tan x=\cos ^{5} x, \quad 0<x<\frac{\pi}{2}
$$

giving your answer in the form $y=f(x)$.

$$
y=\sin x \cos ^{2} x-\frac{\sin ^{3} x \cos ^{2} x}{3}+A \cos ^{2} x
$$

5. Given that for the differential equation

$$
\frac{d^{2} x}{d t^{2}}-5 \frac{d x}{d t}+6 x=2 e^{-t}
$$

$x=0$ and $\frac{d x}{d t}=2$ at $t=0$.
Find x in terms of t.

$$
x=-\frac{5}{3} e^{2 t}+\frac{11}{6} e^{3 t}-\frac{1}{6} e^{-t}
$$

6. A committee of 7 people, which must contain at least 4 men and at least 1 woman, is to be chosen from 10 men and 9 women.
(i) Find the number of possible committees that can be chosen.
(ii) Find the probability that one particular man, Simon, and one particular woman, Diana, are both on the committee.
(iii) Find the number of possible committees that include either Simon or Diana but not both.
(iv) The committee that is chosen consists of 5 men and 2 women. They queue up randomly in a line for refreshments. Find the probability that the women are not next to each other in the queue.
$\begin{array}{llll}\text { (i) } 28602 & \text { (ii) } \frac{1743}{14301} & \text { (iii) } 13860 & \text { (iv) } \frac{5}{7}\end{array}$
7. (i) The digits of the number 3244687 can be rearranged to give many different 7 - digit numbers. How many of these 7 - digit numbers are even.
(ii) How many different numbers between 20000 and 30000 can be formed using 5 different digits from the digits $1,2,3,6,7,8$?
