HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2017

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 – TEST 1 (PREVIEW)

1 hour 20 minutes

This examination paper consists of 2 printed pages.

This paper consists of 9 questions.

The maximum mark for this examination is **60**.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer **ALL** questions
- (iii) Number your questions identically as they appear on the question paper and do **NOT** write your solutions to different questions beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

- (i) Mathematical formulae
- (ii) Scientific calculator (non-programmable, non-graphical)
- 1) Given that p and q are propositions, use the algebra of propositions to simplify fully $(p \land q) \lor (p \land \sim q)$ [3]
- 2) (a) (i) Express in terms of n, $\sum_{r=1}^{n+1} (r+2)$. Ans. $\frac{1}{2} (n+1) [n+6]$ [3]
 - (ii) Given that $\sum_{r=1}^{n+1} (r+2) = 7n$, find the possible value(s) of n. Ans. n=1 or n=6 [3]
 - (b) Determine the values of x and y such that $\frac{3\sqrt{2}+5}{2+\sqrt{2}} \equiv x+y\sqrt{2}$. Ans. $2, \frac{1}{2}$ [3]
- 3) Given that -1 and 2 are two roots of the equation $x^3 + px^2 + x + q = 0$.
 - (i) Find the values of p and q. Ans. p = -4, q = 6
 - (ii) Hence or otherwise, find the other root of the equation. Ans. 3 [3]

[6]

- **4**) Prove by mathematical induction that $\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1} \ \forall \ n \in \mathbb{Z}^{+}.$ [7]
- 5) Solve for $y \in \mathbb{R}$, the equation $6e^{2y} = 7e^y + 3$, giving your answer in terms of logs. Ans. $\ln(\frac{3}{2})$ [5]

	The population increased so that, after a period of n years, the new population was $2400 (1.06)^n$. Calculate estimates of	
	(i) the population at the beginning of 2010. Ans. 4298(ii) the year in which the population is expected to first reached 7000. Ans. 2018	[3] [4]
7)	The function f is given by f: $x \to \ln 2x$ and the function g is given by $g: x \to e^{2x}$.	
	(i) Sketch the graph of f, showing clearly any intersection with the axes.	[2]
	(ii) Find an expression in terms of x for $f^{-1}(x)$. Ans. $\frac{1}{2}e^{x}$	[4]
	(iii) State for $f^{-1}(x)$	
	(a) the domain. Ans. R	[1]
	(b) the range. Ans. $y > 0$	[1]
	(iii) Determine $gf(x)$, simplifying your answer. Ans. $4x^2$	[3]

6) The population of a town at the beginning of the year 2000 was 2400.

9) Find the range of values of x such that $|4-3x| \le x$. Ans. $1 \le x \le 2$ [5]

[4]

8) Find the range of values of $x \in R$ for which $\frac{x-2}{x-3} \le 0$, $x \ne 3$. Ans. $2 \le x < 3$

End of Examination