First Form Mathematics

LESSON 1 on Number Bases

Objective

- In this lesson you'll learn about different Number Bases, specifically about those used by the computer
- Those include:
- Base Two - binary
- Base Eight - octal
- Base Sixteen - hexadecimal

Base Ten

- First let's talk about base ten, the decimal number system which humans use and you have been working with for years.
- It's called base ten because...?

Base Ten

- If you said, "because it has ten counting digits, $0,1,2,3,4,5,6,7,8$, and 9 ", you are right!
- To count in base ten, you go from 0 to 9 , then do combinations of two digits starting with 10 all the way to 99

Base Ten

- After 99 comes three-digit combinations from 100 - 999, etc.
- This combination system is true for any base you use.
- The only difference is how many digits you have before you go to the next combination

Base Two

- To count in base two, which only has 0 and 1 as counting digits, you count 0,1 , then switch to two digit combinations, 10,11 , then to three digit combos, 100, 101,110,111, then four digit, 1000,

Base Three

- To count in base three, which has 0,1 , and 2 as counting digits, you count $0,1,2$, then switch to two digit combinations, $10,11,12,20$, 21,22 , then to three digit combos, 100, 101,102, 110,111, 112, etc...

Base Eight

- Jumping to base eight (often called octal)... what are the counting digits?
- Can you count correctly using single digits, two-digit combinations, and then three-digit combos?

Base Eight

- Here is the base eight counting sequence
- 0,1,2,3,4,5,6,7,10,11,12,13,...77
- 100,101,102,103,104,105,106,107
- 110,111, etc.

Base Sixteen

- Now for one that's a bit strange.
- Base Sixteen, also known as hexadecimal, was especially created by computer scientists to help simplify low-level programming, like machine language and assembly language.

Base Sixteen

- To count in base sixteen, you need 16 counting digits.
- To get sixteen counting digits, you use 0-9, but still need six more...so it was decided to use A, B, C, D, E, and F.

Base Sixteen

- The symbol \mathbf{A} represents the value $10, \mathbf{B}$ is $11, \mathbf{C}$ is $12, \mathbf{D}$ is $13, \mathbf{E}$ is 14, and \mathbf{F} is 15 .
- Here's the single digit sequence for base sixteen:
$0,1,2,3,4,5,6,7,8,9, A, B, C, D_{,}, E, F$

Base Sixteen

- Then the two-digit combos:

10,11,12,...19,1A,1B,1C,1D,1E,1F, 20,21,22,..2D,2E,2F,30,31,...FF

Base conversion

- To convert from base ten to another base, such as base two, eight, or sixteen, is an important skill for computer scientists and programmers.
- The next section shows how to do this.

Base Ten to Base Two

- Let's take the value 27 and convert it into base 2.
- Here's the process:
- Divide 27 by 2
- The answer is 13 , remainder 1
- Divide 13 by 2
- Answer is 6, remainder 1

Base Ten to Base Two

- Continue until the answer is 1.
- 6 divided by $2=3$, remainder 0
- 3 divided by 2 = 1 , remainder 1
- Now take the last answer, 1, and all of the remainders in reverse order, and put them together... 11011
- 27 base $10=11011$ base two

Base Ten to Base Two

- Here's an easy way to do it on paper

$$
2 \left\lvert\, \frac{27}{13} 1\right.
$$

- 27 divided by 2 = 13, R 1

Base Ten to Base Two

$$
\begin{array}{l|ll}
2 & \frac{27}{1} & 1 \\
2 & \frac{13}{6} & 1
\end{array}
$$

- $13 / 2$ = 6, R 1

Base Ten to Base Two

2	27	1
2	13	1
2	$\frac{6}{3}$	0

- $6 / 2=3, R 0$

Base Ten to Base Two

\section*{| 2 | 27 | 1 |
| :--- | :--- | :--- |
| 2 | 13 | 1 |
| 2 | 6 | 0 |
| 2 | $\boxed{3}$ | 1 |
| | 1 | 1 |
 $=1, \mathrm{R} 1$}

Base Ten to Base Two

$$
\begin{array}{l|ll}
2 & 27 & 1 \\
2 & 13 & 1 \\
2 & 6 & 0 \\
2 & \frac{3}{1} & 1
\end{array}
$$

- Stop, and write the answer

Base Ten to Base Two

Exercises

- Now try a few yourself (see last slide for answers):

1. $16_{10}=$2
2. $47_{10}=$
3. $145_{10}=$ 2
4. $31_{10}=$2
5. $32_{10}=$

Base Ten to Base Eight

- Let's again take the value 27 and convert it into base 8 .
- Same process:
- Divide 27 by 8
- The answer is 3, remainder 3
- Stop! You can't divide anymore because the answer is less than 8

Base Ten to Base Eight

- The last answer was 3, and the only remainder was 3 , so the base eight value is 33 , base 8 .

Base Ten to Base Eight

- Use the same method on paper

$$
8 \underline{27}_{3}^{3}
$$

- 27 divided by $8=3, \mathrm{R} 3$
- 27, base $10=33$, base 8

Exercises

Now try the same values for base eight.
6. $16_{10}=$
7. $47_{10}=$
8. $145_{10}=$ 8
9. $31_{10}=$ 8
10. $32_{10}=$

Base Ten to Base Sixteen

- Finally we'll convert 27 into base 16.
- Divide 27 by 16
- The answer is 1 , remainder 11
- Stop! You can't divide anymore because the answer is less than 16

Base Ten to Base Sixteen

- The last answer was 1 , and the only remainder was 11, which in base 16 is the letter B , so the base sixteen value is 1 B , base 16 .

Base Ten to Base Sixteen

- Again, the same method on paper

$$
16 \underline{27} 11 \text { (B) }
$$

- 27 divided by $16=1$, R 11 or B
- 27, base 10 = 1B, base 16

Exercises

- And now try base sixteen!

$$
\begin{aligned}
& \text { 11. } 16_{10}= \\
& \text { 12. } 47_{10}=
\end{aligned}
$$

13. $145_{10}=$
14. $31_{10}=$16
15. $32_{10}=$

Conclusion

- Now you should know
- how to count in different bases
- how to convert from
- Base ten to base 2 - Base ten to base 8 - Base ten to base 16

Here are the answers to the exercises, in jumbled order

10 1F 2020 2F 3740
57912211000011111 10111110000010010001

