## CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 2 - TEST 3

## Time: 1 Hour \& 20 minutes

This examination paper consists of 2 printed pages.
The paper consists of 4 questions.
The maximum mark for this examination is 60.

## INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

## EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non - programmable, non - graphical)
3. Candidates applying for jobs in a large company take a test, as a result of which they are either accepted, rejected or retested, with probabilities $0.25,0.45$ and 0.3 respectively. When a candidate is retested for the first time, the three possible outcomes and their probabilities remain the same as for the original test. When a candidate is retested for the second time there are just two possible outcomes, accepted or rejected with probabilities 0.35 and 0.65 respectively.
(i) Draw a probability tree diagram to illustrate the outcomes.
(ii) Find the probability that a randomly selected candidate is accepted.
(iii) Find the probability that a randomly selected candidate is retested at least once, given that this candidate is accepted.
4. A car park has spaces for 15 cars, arranged in a line. On one day there are 6 cars, of different makes in randomly chosen positions and 9 empty spaces.
(i) Find the number of possible arrangements of the 6 cars.
(ii) Find the probability that the 6 cars are not all next to each other.

On another day, 9 cars of different makes are parked in the car park. 4 of these cars are red, 3 are white and 2 are black. Danielle selects 3 of these cars.
(iii) Find the number of selections Danielle can make that include cars of at least 2 different colours.
[5]
TOTAL 12 Marks
3. (a) Use an integrating factor to find the solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}-\frac{2}{x} y=2 x^{3} e^{2 x} \tag{9}
\end{equation*}
$$

given that $y=e^{4}$ when $x=2$. Give your answer in the form $y=f(x)$.
(b) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=3 x^{2}+5 \tag{8}
\end{equation*}
$$

TOTAL 17 Marks
4. A small company manufactures $x$ shirts, $y$ pants and $z$ skirts each month. During the last three months the costs of the raw materials for making the clothes has increased, resulting in various monthly costs as shown in the table below.

| Month | Unit Cost (\$) |  |  | Total Cost (\$) |
| :--- | :---: | :---: | :---: | :---: |
|  | Shirt | Pants | Skirt |  |
| January | 10 | 15 | 5 | 640 |
| February | 8 | 16 | 8 | 700 |
| March | 10 | 10 | 10 |  |

(i) Use the information in the table above to form a system of linear equations in $x, y$ and $z$.
(ii) Express the system in the form $A X=B$, where $A$ is a $3 \times 3$ matrix and $X$ and $B$ are $3 \times 1$ matrices. [3]
(iii) Calculate, $|A|$, the determinant of the matrix $A$.
(iv) Hence, calculate the inverse of the matrix $A$.
(v) Hence, solve the equations for $x, y$ and $z$.

## END OF TEST

| (i) | Accepted 025 |
| :--- | :--- | :--- |


|  | 0R, 1W, 2B: ${ }^{4} C_{0} \times{ }^{3} C_{1} \times{ }^{2} C_{2}=3$ <br> 1R, 2W, 0B: ${ }^{4} C_{1} \times{ }^{3} C_{2} \times{ }^{2} C_{0}=12$ <br> 1R, 0W, 2B: ${ }^{4} C_{1} \times{ }^{3} C_{0} \times{ }^{2} C_{2}=4$ <br> 2R, 1W, 0B: ${ }^{4} C_{2} \times{ }^{3} C_{1} \times{ }^{2} C_{0}=18$ <br> 2R, 0W, 1B: ${ }^{4} C_{2} \times{ }^{3} C_{0} \times{ }^{2} C_{1}=12$ <br> Number of selections $24+6+3+12+4+18+12=79$ | 1-determining combinations involving 2 reds and 1 other colour <br> 1-determining combinations involving 2 blacks and 1 other colour <br> 1 - summing all arrangements |
| :---: | :---: | :---: |
|  | Total | 12 Marks |
| 3. (a) | $\begin{aligned} & \frac{d y}{d x}-\frac{2}{x} y=2 x^{3} e^{2 x} \\ & \text { I.F }=e^{-\int_{\bar{x}} d x}=\frac{1}{x^{2}} \\ & \left(\frac{1}{x^{2}}\right) \frac{d y}{d x}-\frac{2}{x^{3}} y=2 x e^{2 x} \\ & \int\left(\left(\frac{1}{x^{2}}\right) \frac{d y}{d x}-\frac{2}{x^{3}} y\right) d x=\int 2 x e^{2 x} d x \\ & \frac{y}{x^{2}}=\int 2 x e^{2 x} d x \\ & u=2 x \rightarrow \quad d u=2 \\ & d v=e^{2 x} \quad \rightarrow \quad v=\frac{1}{2} e^{2 x} \\ & \int \begin{array}{l} 2 x e^{2 x} d x=x e^{2 x}-\int e^{2 x} d x \\ \quad=x e^{2 x}-\frac{1}{2} e^{2 x}+c \\ \frac{y}{x^{2}}=x e^{2 x}-\frac{1}{2} e^{2 x}+c \\ y=x^{3} e^{2 x}-\frac{1}{2} x^{2} e^{2 x}+c x^{2} \end{array} \end{aligned}$ <br> When $y=e^{4}, x=2$ $\begin{aligned} & e^{4}=2^{3} e^{4}-\frac{1}{2}(2)^{2} e^{4}+c(2)^{2} \\ & e^{4}=8 e^{4}-2 e^{4}+4 c \\ & -5 e^{4}=4 c \end{aligned}$ | 1 - determine the Integrating Factor <br> 1 - exact differential of left hand side <br> 1 - Integrating $2 x e^{2 x}$ by parts (S.O.I) <br> 1-Substituting expressions into $u v-\int v d u$ <br> 1 - Integrating $e^{2 x}$ (omission of $c$ accepted) <br> 1 - Rearranging to make $y$ the subject <br> 1 - substituting values into general solution |


|  | $\begin{aligned} & c=-\frac{5}{4} e^{4} \\ & y=x^{3} e^{2 x}-\frac{1}{2} x^{2} e^{2 x}-\frac{5}{4} x^{2} e^{2 x} \end{aligned}$ | 1 - correct value of $c$ (68.2 accepted) <br> 1 - Particular solution |
| :---: | :---: | :---: |
| 3. (b) | $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=3 x^{2}+5$ <br> Auxiliary equation $\begin{aligned} & u^{2}+5 u+6=0 \\ & (u+2)(u+3)=0 \\ & u=-3,-2 \\ & y=A e^{-3 x}+B e^{-2 x} \end{aligned}$ <br> Particular Integral $\begin{aligned} & \text { Let } y=D x^{2}+C x+E \\ & \frac{d y}{d x}=2 D x+C \\ & \frac{d^{2} y}{d x^{2}}=2 D \end{aligned}$ $2 D+5(2 D x+C)+6\left(D x^{2}+C x+E\right)=3 x^{2}+5$ $2 D+10 D x+5 C+6 D x^{2}+6 C x+6 E=3 x^{2}+5$ $6 D x^{2}+(10 D+6 C) x+(5 C+2 D+6 E)=3 x^{2}+5$ $6 D=3$ $D=\frac{1}{2}$ $10 D+6 C=0$ $C=-\frac{5}{6}$ $5 C+2 D+6 E=5$ $E=\frac{49}{36}$ | 1 - Auxiliary equation <br> 1 - his complementary function <br> 1 - correct trial equation for particular integral <br> 1 - substituting expressions into original equation <br> 1 mark each - his value for each constant |


|  | $y=\frac{1}{2} x^{2}-\frac{5}{6} x+\frac{49}{36}$ <br> General Solution $y=A e^{-3 x}+B e^{-2 x}+\frac{1}{2} x^{2}-\frac{5}{6} x+\frac{49}{36}$ | 1 - combining his complementary function and his particular integral |
| :---: | :---: | :---: |
|  | Total | 17 Marks |
| 4. (i) | $\begin{array}{ll} 10 x+15 y+5 z=550 & \rightarrow 2 x+3 y+z=110 \\ 8 x+16 y+8 z=640 & \rightarrow x+2 y+z=80 \\ 10 x+10 y+10 z=700 & \rightarrow x+y+z=70 \end{array}$ | 1 mark for each equation |
| (ii) | $\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}110 \\ 80 \\ 70\end{array}\right)$ | 1 mark for each correct matrix |
| (iii) | Using Row 3 $\begin{aligned} & \|A\|=1\left\|\begin{array}{ll} 3 & 1 \\ 2 & 1 \end{array}\right\|-\left\|\begin{array}{ll} 2 & 1 \\ 1 & 1 \end{array}\right\|+\left\|\begin{array}{ll} 2 & 3 \\ 1 & 2 \end{array}\right\| \\ & \|A\|=1-1+1 \\ & \|A\|=1 \end{aligned}$ | 1 - correct signs for each determinant <br> 1 - correct use of the elements of the row or column as coefficients for the determinants <br> 1 - correct cofactors <br> 1 - correct evaluation of each determinant <br> 1 - correct value for the determinant of $A$ |
| (iv) | $\begin{aligned} & B=\left(\begin{array}{ccc} \left\|\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right\| & -\left\|\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right\| & \left\|\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right\| \\ -\left\|\begin{array}{cc} 3 & 1 \\ 1 & 1 \end{array}\right\| & \left\|\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right\| & -\left\lvert\, \begin{array}{c} 2 \\ 1 \end{array}\right. \\ \left\|\begin{array}{ll} 3 & 1 \\ 2 & 1 \end{array}\right\| & -\left\|\begin{array}{ll} 2 & 1 \\ 1 & 1 \end{array}\right\| & \left\|\begin{array}{ll} 2 & 3 \\ 1 & 2 \end{array}\right\| \end{array}\right) \\ & B=\left(\begin{array}{ccc} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 1 & -1 & 1 \end{array}\right) \\ & B^{T}=\left(\begin{array}{ccc} 1 & -2 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{array}\right) \\ & A^{-1}=\left(\begin{array}{ccc} 1 & -2 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{array}\right) \end{aligned}$ | 1 - correct signs for each determinant <br> 1 for each correct row or column not used in calculation of the determinant of $A$ <br> 1 for correctly evaluating the determinants for the 2 rows or columns <br> 1 - Transposing $B$ <br> 1 - the correct inverse |


| (v) | $\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & -1 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}110 \\ 80 \\ 70\end{array}\right)$ | 1 - attempting to multiply by $A^{-1}$ |
| :--- | :--- | :--- | :--- |
| $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1\end{array}\right)\left(\begin{array}{c}110 \\ 80 \\ 70\end{array}\right)$ |  |  |
| $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}20 \\ 10 \\ 40\end{array}\right)$ | - the correct step up for <br> multiplication (Inverse not written |  |
|  | after $\left.\left(\begin{array}{c}110 \\ 80 \\ 70\end{array}\right)\right)$ |  |



2

|  |  | Mark Scheme |  | June 2014 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Answer | Marks |  | idance |
| 2 | (i) |  | G1 G1 G1 [3] | Do a vertical scan and give: <br> First column <br> Second column <br> Final column <br> Do not award if first two branches missing Branches two and three should come out of 'retest' | Allow labels such as A, R, F(Fail) etc <br> All probabilities correct <br> All probabilities correct <br> All probabilities correct <br> If any labels missing or incorrect allow max $2 / 3$ <br> Do not allow misreads here as all FT (eg 0.3 and 0.5 reversed) |
| 2 | (ii) | $\begin{aligned} & \mathrm{P}(\text { Accepted })=0.2+(0.3 \times 0.2)+(0.3 \times 0.3 \times 0.4) \\ & =0.2+0.06+0.036=0.296 \end{aligned}$ | M1 <br> A1 <br> [2] | For second or third product <br> CAO | FT their tree provided correct numbers of terms and correct structure of 3, 3, 2 branches. <br> Allow 37/125 oe |
| 2 | (iii) | $\begin{aligned} & \mathrm{P}(\text { At least one retest given accepted }) \\ & =\frac{\mathrm{P}(\text { At least one retest and accepted })}{P(\text { Accepted })} \\ & =\frac{(0.3 \times 0.2)+(0.3 \times 0.3 \times 0.4)}{0.296}=\frac{0.096}{0.296} \\ & =0.324 \end{aligned}$ | M1 <br> M1 <br> Al <br> [3] | For numerator <br> For denominator <br> FT their 0.296 and 0.096 Allow 0.32 with working | FT their tree provided correct numbers of terms and correct structure of 3, 3, 2 branches. for both M1's <br> Both must be part of a fraction Allow $12 / 125$ oe <br> Allow 12/37 oe |

MFP3(cont)



