HARRISON COLLEGE INTERNAL EXAMINATION 2022
CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 2 - TEST 1
1 hour 20 minutes
This examination paper consists of 14 pages.
This paper consists of 3 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (a) (i) Differentiate $f(x)=\cos ^{-1} 3 x \quad$ where $-\frac{1}{3}<x<\frac{1}{3}$.
(ii) Differentiate $y=\frac{\ln 3 x}{\sin ^{-1} x}$
(b) The curve C is defined parametrically by

$$
x=t+\ln (t+1), \quad y=3 t e^{2 t}
$$

Find the equation of the tangent to the curve at the origin.
(c) Consider the curve defined by $y^{2}=\sin (x y), y \neq 0$, show that $\frac{d y}{d x}=\frac{y \cos (x y)}{2 y-x \cos (x y)}$.
(d) Let $f(x, y)=x^{2} y-2 x+y^{3}$, find $\frac{\partial^{2} f}{\partial x \partial y}$.
2. (a) Find $\int \frac{1}{\sqrt{16-6 x-x^{2}}} d x$
[3]
(b) Let $f(x)=\frac{6 x^{2}+8 x+9}{(2-x)(3+2 x)^{2}}$
i. Express $f(x)$ in partial fractions.

PLEASE TURN OVER
ii. Hence find $\int_{-1}^{0} f(x) d x$ giving your answer in the form $a+\frac{1}{2} \ln \left(\frac{b}{c}\right)$, where $a, b, c \in \mathbb{R}$.
(c) It is given that for $n \geq 0$

$$
\begin{equation*}
I_{n}=\int_{0}^{e} x(\ln x)^{n} d x \tag{4}
\end{equation*}
$$

(i) Prove that for $n \geq 1, \quad 2 I_{n}=e^{2}-n I_{n-1}$.
(ii) Find the exact value of I_{3}.
(d) Use the trapezium rule with 4 strips to find an approximation to

$$
\int_{-1}^{1} \sqrt{\ln (2+x)} d x
$$

giving your answer to 2 decimal places.
3. (a) Showing all necessary working, express the complex number $\frac{2+3 i}{1-2 i}$ in the form $r e^{i \theta}$ where $r>0$ and $-\pi<\theta \leq \pi$.

Give the value of r and θ correct to 3 significant figures.
(b) The complex number $2-i$ is denoted by u.

It is given that u is root of the equation $x^{3}+a x^{2}-3 x+b=0$, where the constants a and b are real. Find the values of a and b.
(c) The complex number u is given by $u=-1+(4 \sqrt{3}) i$.

Find the two square roots of u.
Give your answers in the form $a+i b$, where a and b are exact.
(d) On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $|z-3+2 i|=1$. Find the least value of $|z|$ for points on this locus, giving your answer in an exact form.

