- 1. (a) Determine the equation of the curve which is the locus of the points $\sqrt{5}$ units from the point (-2, 3).
 - (b) The diagram below, not drawn to scale, shows a roller, centre *O*, on horizontal ground. The roller is represented by the equation $x^2 + y^2 8x 6y = -16$, *OB* is the arm of the roller and *B* has coordinates (11, 0).

[2]

	(i)	Ι	Determine the equation of the arm <i>OB</i> .	[5]	
	(ii)) (Given that OA is a vertical line calculate the distance from the base of the roller to the		
		p	point where the arm meets the ground.	[5]	
2.	(a)	Prove	$e \tanh \sin^4 \theta - \cos^4 \theta + 1 = 2 \sin^2 \theta.$	[4]	
	(b)	(b) Determine the general solutions of the equation $\sec \theta + 5 \tan \theta = 3 \cos \theta$ for $0 \le 10^{-10}$		2π. [7]	
	(c)	(i)	Given that $\sin A = \frac{3}{5}$ determine the values of		
			(a) sin 2 <i>A</i>	[2]	
			(b) cos 2 <i>A</i>	[2]	
			(c) cos 3 <i>A</i>	[3]	
		(ii)	Using your answer for (c) (i) (a) and (b) determine which quadrant 2A is in g	giving a	
			reason for your answer.	[2]	
	(d)	(i)	Express $f(\theta) = 5 \sin \theta + 12 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where $R > 0$ and		
			$0 < \alpha < \pi$.	[3]	
		(ii)	Is 14 a possible value for $f(\theta)$. Give a reason for your answer.	[2]	
		(iii)	Solve the equation $f(\theta) = 2$ for $0 \le \theta \le 2\pi$.	[5]	
3.	Relative to an origin <i>O</i> , the position vectors of the points <i>A</i> and <i>B</i> are given by				
			$\overrightarrow{OA} = -i + 2j + 3k$ and $\overrightarrow{OB} = 4i + 2j - 3k$		
	(i) Use a scalar product to find angle <i>AOB</i> , correct to the nearest degree.			[4]	
	(ii) Find the unit vector in the direction of \overrightarrow{AB} .			[3]	
	(iii) The vector $n = 6i + 4j + 5k$ is normal to the plane containing the points <i>A</i> and <i>B</i> . Determine the				
	equation of this plane in the form $r.n = d.$ [3]				
4.	(a) A curve is represented parametrically by				
			$x = \frac{1}{t}$ and $y = \frac{2-t^2}{t}$		
	Determine the equation of the curve in Cartesian form. [4			[4]	
	(b)	A cur	ve C has parametric equations		
			$x = \cos t$, $y = 3 + 2\cos 2t$, where $0 \le t \le \pi$		

Show that the Cartesian equation of *C* is $y = ax^2 + b$ where *a* and *b* are constants. [4]