1. (a) Determine the equation of the curve which is the locus of the points $\sqrt{5}$ units from the point $(-2,3)$.
(b) The diagram below, not drawn to scale, shows a roller, centre O, on horizontal ground. The roller is represented by the equation $x^{2}+y^{2}-8 x-6 y=-16, O B$ is the arm of the roller and B has coordinates $(11,0)$.

(i) Determine the equation of the arm $O B$.
(ii) Given that $O A$ is a vertical line calculate the distance from the base of the roller to the point where the arm meets the ground.
2. (a) Prove that $\sin ^{4} \theta-\cos ^{4} \theta+1=2 \sin ^{2} \theta$.
(b) Determine the general solutions of the equation $\sec \theta+5 \tan \theta=3 \cos \theta$ for $0 \leq \theta \leq 2 \pi$. [7]
(c) (i) Given that $\sin A=\frac{3}{5}$ determine the values of
(a) $\sin 2 A$
(b) $\cos 2 A$
(c) $\cos 3 A$
(ii) Using your answer for (c) (i) (a) and (b) determine which quadrant $2 A$ is in giving a reason for your answer.
(d) (i) Express $f(\theta)=5 \sin \theta+12 \cos \theta$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and $0<\alpha<\pi$.
(ii) Is 14 a possible value for $f(\theta)$. Give a reason for your answer.
(iii) Solve the equation $f(\theta)=2$ for $0 \leq \theta \leq 2 \pi$.
3. Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=-i+2 j+3 k \text { and } \overrightarrow{O B}=4 i+2 j-3 k
$$

(i) Use a scalar product to find angle $A O B$, correct to the nearest degree.
(ii) Find the unit vector in the direction of $\overrightarrow{A B}$.
(iii) The vector $n=6 i+4 j+5 k$ is normal to the plane containing the points A and B. Determine the equation of this plane in the form $r . n=d$.
4. (a) A curve is represented parametrically by

$$
x=\frac{1}{t} \quad \text { and } \quad y=\frac{2-t^{2}}{t}
$$

Determine the equation of the curve in Cartesian form.
(b) A curve C has parametric equations

$$
x=\cos t, \quad y=3+2 \cos 2 t, \quad \text { where } 0 \leq t \leq \pi
$$

Show that the Cartesian equation of C is $y=a x^{2}+b$ where a and b are constants.

