HARRISON COLLEGE INTERNAL EXAMINATION, MARCH 2017
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 2
 Time: 1 Hour \& 20 minutes

This examination paper consists of 3 printed pages.
The paper consists of 8 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions bedside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. Solve, for $-\pi \leq \theta \leq \pi$, the equation $3 \tan ^{2} \theta+4 \sec \theta=1$
4. Prove that $\sec 2 A+\tan 2 A \equiv \frac{\cos A+\sin A}{\cos A-\sin A}$.
5. Given that $\operatorname{cosec} A=\frac{13}{5}$ and $\cos B=\frac{3}{5}$, where A and B are both acute angles, find the exact value of $\cos (A+B)$.
6. Express $5 \cos x-3 \sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$, giving the exact value of R and the values of α correct to 1 decimal place.

Hence solve the equation $5 \cos x-3 \sin x=4$ for $0^{\circ} \leq x \leq 360^{\circ}$.
5. i) Show that the circle, C_{1}, with equation $x^{2}+y^{2}-6 x-4 y+9=0$ touches the x-axis and that the circle, C_{2}, with equation $x^{2}+y^{2}-2 x-6 y+9=0$ touches the $y-$ axis.
ii) Find the coordinates of the points of intersection of the two circles.
iii) Find the equation of the line passing through the two points of intersection.
6. i) Determine the vector equation of the line joining the points $(2,4,4)$ and $(3,3,5)$.
ii) Prove that the straight line with equation $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$ intersects the line from part i).
iii) Determine the angle between the two lines.
7. The position vectors of three points A, B and C on a mountain slope are

$$
\boldsymbol{a}=4 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}, \boldsymbol{b}=-2 \boldsymbol{i}+26 \boldsymbol{j}+11 \boldsymbol{k}, \boldsymbol{c}=16 \boldsymbol{i}+17 \boldsymbol{j}+2 \boldsymbol{k}
$$

where the units are metres.
i) Find the distance between the points A and B.
ii) Show that the vector $2 \boldsymbol{i}-3 \boldsymbol{j}+7 \boldsymbol{k}$ is perpendicular to $\overrightarrow{A B}$ and also perpendicular to $\overrightarrow{A C}$. Hence find the equation of the plane of the mountain slope.

An overhead cable lies along $D E F$, where D and E have position vectors $\boldsymbol{d}=130 \boldsymbol{i}-40 \boldsymbol{j}+20 \boldsymbol{k}$ and $\boldsymbol{e}=90 \boldsymbol{i}-20 \boldsymbol{j}+15 \boldsymbol{k}$, and F is a point on the mountain slope.
iii) Find the equation of the straight line $D E$.
iv) Find the size of the acute angle between the cable and the slope.

