HARRISON COLLEGE INTERNAL EXAMINATION, MARCH 2017

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 – TEST 2

Time: 1 Hour & 20 minutes

This examination paper consists of 3 printed pages.

The paper consists of 8 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Number your questions carefully and do **NOT** write your solutions to different questions bedside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae
- 2. Electronic calculator (non-programmable, non-graphical)
- 1. Solve, for $-\pi \le \theta \le \pi$, the equation $3tan^2\theta + 4sec\theta = 1$ [7]
- 2. Prove that $\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A \sin A}$. [5]
- 3. Given that $cosecA = \frac{13}{5}$ and $cosB = \frac{3}{5}$, where *A* and *B* are both acute angles, find the exact value of cos(A + B). [6]
- 4. Express $5\cos x 3\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of *R* and the values of α correct to 1 decimal place.

Hence solve the equation
$$5\cos x - 3\sin x = 4$$
 for $0^{\circ} \le x \le 360^{\circ}$. [6]

- 5. i) Show that the circle, C₁, with equation x² + y² 6x 4y + 9 = 0 touches the x axis and that the circle, C₂, with equation x² + y² 2x 6y + 9 = 0 touches the y axis. [5]
 ii) Find the coordinates of the points of intersection of the two circles. [5]
 iii) Find the equation of the line passing through the two points of intersection. [3]
- 6. i) Determine the vector equation of the line joining the points (2, 4, 4) and (3, 3, 5). [3]

ii) Prove that the straight line with equation
$$\begin{pmatrix} 1\\ 2\\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix}$$
 intersects the line from part i).

[3]

- iii) Determine the angle between the two lines. [3]
- 7. The position vectors of three points A, B and C on a mountain slope are

$$a = 4i + 2j - k, b = -2i + 26j + 11k, c = 16i + 17j + 2k$$

where the units are metres.

- i) Find the distance between the points *A* and *B*. [3]
- ii) Show that the vector 2i 3j + 7k is perpendicular to \overrightarrow{AB} and also perpendicular to \overrightarrow{AC} . Hence find the equation of the plane of the mountain slope. [3]

An overhead cable lies along DEF, where D and E have position vectors

$$d = 130i - 40j + 20k$$
 and $e = 90i - 20j + 15k$, and F is a point on the mountain slope.

- iii) Find the equation of the straight line *DE*. [3]
- iv) Find the size of the acute angle between the cable and the slope. [5]