HARRISON COLLEGE INTERNAL EXAMINATION, MARCH 2018
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 2

Time: 1 Hour \& 20 minutes
This examination paper consists of 3 printed pages.
The paper consists of 9 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions bedside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. Solve, for $0 \leq \theta \leq 2 \pi$, the equation $4 \tan ^{2}-3 \sec \theta=-3$

Total 7 marks
2. Prove that

$$
\begin{equation*}
\cos 2 A \equiv \frac{\cot A-\tan A}{\cot A+\tan A} \tag{6}
\end{equation*}
$$

3. Find the general solution of the equation $\cos 3 A+\cos 5 A=0$.

Total 6 marks
4. Express $4 \cos x-\sqrt{3} \sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$, giving the exact value of R and the values of α correct to 1 decimal place and state the value of x for which $4 \cos x-\sqrt{3} \sin x$ assumes its minimum value.

Hence solve the equation $4 \cos x-\sqrt{3} \sin x+3=0$ for $0^{\circ} \leq x \leq 360^{\circ}$.
Total 7 marks
5. Find the Cartesian equation of the curve whose parametric equations are given by

$$
\begin{equation*}
x=3 t+2 \text { and } y=t^{2}+5 . \tag{5}
\end{equation*}
$$

Total 5 marks
6. Find the coordinates of the point(s) of intersection of the two circles with equations

$$
\begin{equation*}
x^{2}+y^{2}-5 x+3 y-4=0 \text { and } x^{2}+y^{2}-4 x+6 y-12=0 \tag{8}
\end{equation*}
$$

Total 8 marks
7. Determine the equation of the tangent to the circle $x^{2}+y^{2}+8 x=9$ at the point $(0,-3)$.
8. A plane passes through the point $P(2,-5,1)$ and is perpendicular to the line passing through the points $Q(-3,3,2)$ and $R(11,3,5)$. Find the
i) Vector equation of the plane [4]
ii) Cartesian equation of the plane
iii) Distance from the origin to the plane

Total 8 marks

9. Laser lights are used as part of a show celebrating a country's independence. Two of the light beams have equations as follows:

$$
\boldsymbol{r}=\left(\begin{array}{c}
3 \\
-1 \\
6
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right) \text { and } \frac{x+5}{2}=\frac{y-3}{1}=\frac{z+1}{-1}
$$

i) Calculate the size of the angle, in degrees, between these two light beams.
ii) Determine the coordinates of the point of intersection, if any, of these two light beams.

Total 8 marks

END OF TEST

