HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2022
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 20 minutes

This examination paper consists of 3 pages.
This paper consists of 7 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
\begin{gathered}
u_{1}=2, \\
u_{n+1}=b u_{n}-3, \quad n>1
\end{gathered}
$$

where b is a constant.
a) Find an expression for u_{2} in terms of b.
b) Show that $u_{3}=2 b^{2}-3 b-3$.

Given that $u_{3}=32$,
c) find the possible values of b.

Total: 6 marks
2. Jaina saves money over a period of 200 weeks. She saves $\$ 5$ in week $1, \$ 7$ in week $2, \$ 9$ in week 3 , and so on until week 200. Her weekly savings form an arithmetic sequence.
a) Find the amount she saves in week 200.
b) Calculate her total savings over the complete 200 week period.
3. A series of positive integers $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=6 \text { and } u_{n+1}=6 u_{n}-5, \text { for } n \geq 1 .
$$

Prove by induction that $u_{n}=5 \times 6^{n-1}+1$, for $n \geq 1$.
Total: 8 marks
4. a) Express

$$
\frac{2}{(r+1)(r+3)}
$$

in partial fractions.
b) Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}=\frac{n(a n+b)}{6(n+2)(n+3)}
$$

where a and b are constants to be found.
c) Find the value of

$$
\begin{equation*}
\sum_{r=21}^{30} \frac{2}{(r+1)(r+3)} \tag{3}
\end{equation*}
$$

to 5 decimal places.
Total: 14 marks
5. a) Write down and simplify the first three non-zero terms of the Maclaurin series for

$$
\begin{equation*}
\ln (1+3 x) \tag{3}
\end{equation*}
$$

b) Hence find the first three non-zero terms of the Maclaurin series for $e^{x} \ln (1+3 x)$, simplifying the coefficients.
6. a) Use the binomial series to expand $\frac{1}{\sqrt{4-3 x}}$, where $|x|<\frac{4}{3}$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{4-3 x}}$ as a series in ascending powers of x.
7.

$$
f(x)=4 \cos x+e^{-x}
$$

a) Show that the equation $f(x)=0$ has a root α between 1.6 and 1.7
b) Use linear interpolation once, to obtain an approximation to α. Give your answer to 2 decimal places.
c) Taking 1.6 as your first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to obtain a second approximation to α. Give your answer to 3 significant figures.

