HARRISON COLLEGE INTERNAL EXAMINATION 2021 PREVIEW
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2

Time: 1 hour and 20 minutes

1. a) In the expansion of $(3+p x)^{6}$, the coefficient of x^{3} is thirty times the coefficient of the x^{5} term. Find the possible values of p.

$$
[p= \pm 1]
$$

b) i) Expand $\sqrt[4]{(1-2 x)}$ in ascending powers of x up to and including the term in x^{3} and state the values of x for which the expansion is valid.

$$
\left[1-\frac{1}{2} x-\frac{3}{8} x^{2}-\frac{7}{16} x^{3} \quad \text { valid for }-\frac{1}{2}<x<\frac{1}{2}\right]
$$

ii) Use your expansion from i) to find an approximation for $\sqrt[4]{0.998}$ to 6 decimal places.
[0.999500]
Total 13 marks
2. Find the Taylor series expansion for $f(x)=\sqrt{8+e^{x}}$ about $a=0, x \in \mathbb{R}$, in ascending powers of x, up to and including the term in x^{2}. Express each coefficient in its simplest form.

$$
\left[3+\frac{1}{6} x+\frac{17}{216} x^{2}+\cdots\right]
$$

3. A sequence is defined by

$$
u_{1}=\frac{3}{4} \quad \text { and } \quad u_{n+1}=\frac{3}{4-u_{n}} \text { for } n=1,2,3, \ldots
$$

i) Calculate u_{2}.

$$
\left[\frac{12}{13}\right]
$$

ii) Prove by mathematical induction that, for $n \geq 1$,

$$
u_{n}=\frac{3^{n+1}-3}{3^{n+1}-1}
$$

4. i) Show that

$$
\frac{1}{r}-\frac{1}{r+2} \equiv \frac{2}{r(r+2)}
$$

ii) Hence find an expression, in terms of n, for

$$
\sum_{r=1}^{n} \frac{2}{r(r+2)}
$$

iii) Find the value of N, given that

$$
\sum_{r=N+1}^{\infty} \frac{2}{r(r+2)}=\frac{13}{42}
$$

Total 14 marks

5. a) i) Show that the equation

$$
2 x^{5}+x^{3}-1=0
$$

has a root between 0 and 1 .
ii) Use linear interpolation once, starting with the interval in a) i), to give an approximate value of this root.

$$
\left[\frac{1}{3}\right]
$$

b) It is known that the function

$$
f(x)=\sin x-\ln x
$$

has a root α in the interval [2.2, 2.3].
i) Find $f^{\prime}(x)$.
[2 marks]

$$
\left[\cos x-\frac{1}{x}\right]
$$

i) Using $x_{0}=2.3$ as a first approximation to α, apply the Newton-Raphson procedure twice to $f(x)$ to find a third approximation to α, giving your answer to 3 decimal places.

$$
\left[x_{2}=2.219\right]
$$

