CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
SCHOOL BASED ASSESSMENT PREVIEW
PURE MATHEMATICS
UNIT 1 - TEST 3
1 hour 30 minutes

This examination paper consists of 2 printed pages.
This paper consists of 3 questions.
The maximum mark for this examination is 60 .

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Scientific calculator (non-programmable, non-graphical)
3. (a) Find:

$$
\begin{array}{lll}
\text { i. } & \lim _{n \rightarrow 5} \frac{n^{2}-25}{n-5} & \text { Ans. } 10 \\
\text { ii. } & \lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x} & \text { Ans. } 4 / 3 \tag{5}
\end{array}
$$

(b) Given that $\lim _{x \rightarrow-2}\{4 f(x)\}=5$, evaluate $\lim _{x \rightarrow-2}\{f(x)+2 x\}$ Ans. - 11/4
2. (a) Differentiate with respect to x, from first principles, the function,

$$
\begin{equation*}
f(x)=2 x^{2}-x+5 \tag{5}
\end{equation*}
$$

Ans. $4 x-1$
(b) The equation of a curve is given to be $y=\frac{2 x^{3}+1}{x^{3}-4}$, show that $\frac{d y}{d x}=\frac{-27 x^{3}}{\left(x^{3}-4\right)^{2}}$. [4]
(c) Two parametric equations are given to be given to be defined as
$x=a \cos ^{2} \theta, y=a \sin ^{2} \theta$ where $a \in \mathbb{R}$, find the gradient $\frac{d y}{d x}$ in terms of θ.

$$
\text { Ans. }-1
$$

(d) The equation of a curve is given as $f(x)=2 x^{3}-3 x^{2}-12 x+3$.
i. Determine f^{\prime}.
ii. Determine $f^{\prime \prime}$.
[1]
Ans. $12 x-6$
iii. Find the coordinates of the stationary points and determine their nature.

$$
\text { Ans. }(-1,10)-\max ;(2,-5)-\min
$$

3. (a) Use an appropriate substitution to find $\int x \sqrt{x^{2}+6} d x$.

$$
\text { Ans. } 1 / 3 \sqrt{\left(x^{2}+6\right)^{3}}
$$

(b) Travis is inflating a spherical balloon at the rate $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of the surface area of the balloon when the radius is 4 cm . (For a sphere, $V=\frac{4}{3} \pi r^{3}, A=4 \pi r^{2}$)

$$
\text { Ans. } 5 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

(c) Sketch the graph $y=x^{2}+x$
ii. Find the total area bounded by the curve in part (c), the x-axis and the lines $x=-1$ and $x=3$.

Ans. $13 \frac{2}{3}$ units 2

