SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 2 - TEST 1
TIME: 1 Hour \& 20 minutes
This examination paper consists of 2 printed pages.
The paper consists of 3 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. (a) The complex numbers z and w are given by $z=2+3 i$ and $w=-1-6 i$ respectively. Find.
(i) $2 z-w$
(ii) $|2 z-w|$
(iii) $\arg (2 z-w)$
(iv) $\frac{z}{w}$ giving your answer in the form $x+i y$
(b) (i) Express $\sin n \theta$ and $\cos n \theta$ in terms of $e^{i n \theta}$ and $e^{-i n \theta}$.
(ii) Hence show that

$$
\begin{equation*}
\sin ^{4} \theta=\frac{1}{8}(\cos 4 \theta-4 \cos 2 \theta+3) \tag{5}
\end{equation*}
$$

2. (a) Find $\frac{d y}{d x}$ when
(i) $y=e^{\sqrt{x}}+\cos ^{-1}(2 x)$
(ii) $y=\frac{\ln \left(x^{2}\right)}{\sin ^{-1} x}$
(b) Find the gradient of the curve $3 x^{2}+2 x y+(\ln y)^{2}=16$ at the point $(2,1)$.
(c) A curve is defined by the parametric equations

$$
\begin{equation*}
y=\frac{t}{2 t+3} \text { and } x=e^{-2 t} \tag{5}
\end{equation*}
$$

Find the gradient of the curve at the point for which $t=0$.
(d) Let $f(x, y)=\left(x^{2}+y^{2}\right)^{5}+\ln (x y)$, find $\quad \frac{\partial^{2} f}{\partial x \partial y}$

TOTAL 17 marks
3. (a) (i) Express $f(x)=\frac{10 x+9}{(2 x+1)(2 x+3)^{2}}$ in partial fractions.
(ii) Hence show that $\int_{0}^{1} f(x) d x=\frac{1}{2} \ln \left(\frac{9}{5}\right)+\frac{1}{5}$.
(b) Using the substitution $u=x^{2}$, find
$\int_{1}^{2} \frac{4 x}{1+x^{4}} d x \quad$ (give your answer to 2 decimal places)
(c) It is given that for $n \geq 0, \quad I_{n}=\int_{0}^{\frac{1}{2}}(1-2 x)^{n} e^{x} d x$
(i) Show that for $n \geq 1$

$$
\begin{equation*}
I_{n}=2 n I_{(n-1)}-1 \tag{4}
\end{equation*}
$$

(ii) Find the exact value of I_{3}.
(d) Use the trapezium rule with 4 trapezia of equal width to estimate the value of

$$
\begin{equation*}
\int_{0}^{4} \frac{1}{1+\sqrt{x}} d x \text {. Give your answer to } 2 \text { decimal places. } \tag{4}
\end{equation*}
$$

TOTAL 27 marks

