1. a) Determine

$$
\begin{equation*}
\lim _{x \rightarrow-2} \frac{x+2}{2 x^{3}-8 x} \tag{4}
\end{equation*}
$$

b) Differentiate $f(x)=x^{2}+5 x-7$, using first principles.
c) The function $f(x)$ is defined by $f(x)=\left\{\begin{array}{cc}x^{3} & x \leq 2 \\ a x^{2} & x>2\end{array}\right\}$

Find i) $\lim _{x \rightarrow 2^{-}} f(x)$
ii) the value of a for which the function $f(x)$ is continuous

Total 14 marks
2. A curve C has equation

$$
y=\frac{x^{2}}{x+2}, x \neq-2
$$

The point P on C has x-coordinate 2. Find an equation of the normal to the curve C at P in the form $a x+b y+c=0$, where a, b and c are integers.

Total 7 marks
3. A curve has equation

$$
\begin{equation*}
y=\frac{x}{1+x^{2}} \tag{5}
\end{equation*}
$$

a) Use calculus to find the coordinates of the turning points of the curve.
b) Show that

$$
\frac{d^{2} y}{d x^{2}}=\frac{2 x\left(x^{2}-3\right)}{\left(1+x^{2}\right)^{3}}
$$

c) Determine the nature of each of the turning points.
4. The figure below shows a metal cube which is expanding uniformly as it is heated. At time t seconds, the length of each edge of the cube is $2 x \mathrm{~cm}$, and the volume of the cube is $V \mathrm{~cm}^{3}$.

a) Show that $\frac{d V}{d x}=24 x^{2}$
b) Given that the volume, $V \mathrm{~cm}^{3}$, increases at a constant rate of $0.144 \mathrm{~cm}^{3} s^{-1}$, find
i) $\frac{d x}{d t}$, when $x=2$
ii) The rate of increase of the total surface area, A, of the cube, in $c m^{2} s^{-1}$, when $x=2$.

Total 8 marks
5. a) Use calculus to find the value of

$$
\int_{-1}^{1}\left(\frac{2 x^{5}-3 x^{4}+2 x^{3}}{x^{2}}\right) d x
$$

b) Find the value of k if $\int_{k}^{0}(x+4)^{2} d x=\frac{64}{3}$.

Total 10 marks

6 a) By using the substitution $U=\sin x+\cos x$, show that

$$
\int(\sin x-\cos x)(\sin x+\cos x)^{7} d x=-\frac{1}{8}(\sin x+\cos x)^{8}+c
$$

b) Hence, find the EXACT value of

$$
\int_{0}^{\frac{\pi}{4}}(\sin x-\cos x)(\sin x+\cos x)^{7} d x
$$

Answers

1. a) $\frac{1}{16}$
b) $2 x+5$
c) i) 8
ii) $a=2$
2. $4 x+3 y-11=0$
3. a) $\left(1, \frac{1}{2}\right)$ and $\left(-1,-\frac{1}{2}\right)$
b) Proof
c) $\operatorname{maximum}\left(1, \frac{1}{2}\right)$ and minimum $\left(-1,-\frac{1}{2}\right)$
4. a) Proof
b) i) $0.0015 \mathrm{cms}^{-1}$
ii) $0.144 \mathrm{cms}^{-1}$
5. a) -2
b) $k=-4$
6. a) Proof
b) $-\frac{15}{8}$
