HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 2 - TEST 2
1 hour 20 minutes
This examination paper consists of $\mathbf{3}$ printed pages.
This paper consists of $\mathbf{8}$ questions.
The maximum mark for this examination is $\mathbf{6 0}$.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Scientific calculator (non-programmable, non-graphical)
3. The first term of an arithmetic series is 1 . The common difference of the series is 6 .
a) Find the tenth term of the series.
b) The sum of the first n terms of the series is 7400 .
i) Show that $3 n^{2}-2 n-7400=0$.
ii) Find the value of n.

Total 7 marks
2. A savings account pays 4.5% compound interest. A deposit of $\$ 5000$ is invested in this scheme at the start of each year.
a) Determine the amount of money in the account at the start of the third year after the annual deposit has been made.
b) Find the amount in the savings account at the start of the $15^{\text {th }}$ year after the annual deposit has been made.

Total 7 marks
3. a) Show that the equation $e^{x}+x-3=0$ has a root between 0 and 1 .
b) With a first approximation of 0.5 , use the Newton-Raphson method to solve the equation $e^{x}+x-3=0$, giving your answer correct to 4 decimal places.
4. a) The first four terms of the binomial expansion of $(1+2 x)^{8}$ in ascending powers of x are $1+a x+b x^{2}+c x^{3}$.Find the values of the integers a, b and c.
b) Hence, find the coefficient of x^{3} in the expansion of

$$
\begin{equation*}
\left(1+\frac{1}{2} x\right)(1+2 x)^{8} \tag{3}
\end{equation*}
$$

Total 7 marks
5. a) Find the binomial expansion of

$$
\begin{equation*}
\sqrt{(1-8 x)},|x|<\frac{1}{8} \tag{4}
\end{equation*}
$$

in ascending powers of x up to and including the term in x^{3}, simplifying each term.
b) Show that, when $x=\frac{1}{100}$, the EXACT value of $\sqrt{(1-8 x)}$ is $\frac{\sqrt{23}}{5}$.
c) Hence, using the expansion in part a), obtain an approximation to $\sqrt{23}$, giving your answer to 5 decimal places.

Total 9 marks
6. a) Obtain the first four non-zero terms in the Maclaurin series expansion of $f(x)=\cos 2 x$.
b) Hence, using the double angle formula for $\cos 2 x$, find the first three non-zero terms in the expansion of $\sin ^{2} x$.
c) Use the result from b) to show that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin ^{2} x-x^{2}}{x^{4}}=\frac{-1}{3} \tag{2}
\end{equation*}
$$

Total 7 marks
7. a) Verify the identity

$$
\begin{equation*}
\frac{2 r-1}{r(r-1)}-\frac{2 r+1}{r(r+1)} \equiv \frac{2}{(r-1)(r+1)} \tag{4}
\end{equation*}
$$

b) Hence, using the method of summation by differences, prove that

$$
\sum_{r=2}^{n} \frac{2}{(r-1)(r+1)}=\frac{3}{2}-\frac{2 n+1}{n(n+1)}
$$

8. Prove by mathematical induction that

$$
\sum_{r=1}^{n} r(r!)=(n+1)!-1 \text { for all } n \in \mathbb{N}
$$

END OF TEST

