HARRISON COLLEGE INTERNAL EXAMINATION, 2019 (PREVIEW)

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 – TEST 3

Time: 1 Hour & 20 minutes

This examination paper consists of 2 printed pages.

The paper consists of 3 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Number your questions carefully and do **NOT** write your solutions to different questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact, **MUST** be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae
- 2. Electronic calculator (non programmable, non graphical)
- 1. (a) Determine the real values of *x* for which the function

 $f(x) = \frac{x+3}{x^2 - 2x-8}$ is continuous. $[x \neq 4, x \neq -2]$ [3]

(b) Evaluate (i) $\lim_{x \to \frac{1}{4}} \frac{1 - 16x^2}{1 - 4x}$ [2] [3]

(ii)
$$\lim_{x \to 0} \frac{5 \sin 6x}{\sin 4x} \qquad [\frac{15}{2}]$$
 [4]

- (c) Differentiate from first principles $y = \sqrt{x}$ [7]
- (d) The function *f* is defined by $f = \begin{cases} 3x+1 & x \le 5 \\ 6-ax & x > 5 \end{cases}$

Find (i)
$$\lim_{x \to 5^-} f(x)$$
 [16] [1]

(ii) the value of *a* so that the function is continuous. [-2] [2]

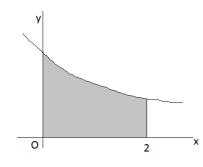
TOTAL 20 marks

(a) A curve has equation $y = \frac{1}{x-2} + x$.

- (i) Write down expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2} \cdot [-(x-2)^{-2} + 1; 2(x-2)^{-3}] [2]$
- (ii) Find the coordinates of the maximum point A and the minimum point B on the curve. [(1, 0) max; (3, 4) min] [5]

(b) Given that
$$y = \frac{\sin x}{1 + \cos x}$$
, find $\frac{dy}{dx}$, simplifying your answer. $\frac{1}{1 + \cos x}$ [4]

(c) Given that
$$y = (x + 4)\sqrt{x - 4}$$
.
(i) Show that $\frac{dy}{dx} = \frac{3x - 4}{2\sqrt{x - 4}}$ [4]


(ii) Find the equation of the normal where x = 8. $[y - 24 = -\frac{1}{5}(x - 8)]$ [3]

(d) The parametric equation of a curve are
$$x = t^3 - 3$$
 and $y = t^2 - 5t$
Find an expression for $\frac{dy}{dx}$. $\frac{2t-5}{3t^2}$ [3]

TOTAL 21 marks

(a) (i) Using the substitution
$$u = 5 + x^2$$
, find $\int 3x (\sqrt{5 + x^2}) dx$ [5]
(ii) Evaluate $\int_{\pi/6}^{\pi/2} (2\sin x + 3\cos 2x) dx$ $\frac{\sqrt{3}}{4}$ [5]

(b) The diagram shows part of the curve $y = \frac{1}{(3x+1)^{\frac{1}{3}}}$. The shaded region is bounded by the curve and the lines x = 0, x = 2 and y = 0.

- (i) Find the area of the shaded region. [1.33] [4]
- (ii) The shaded region is rotated completely about the x-axis. Find the volume of the solid formed. $[0.91\pi]$ [5]

TOTAL 19 marks

END OF EXAMINATION

3.

2.