HARRISON COLLEGE INTERNAL EXAMINATION, 2019

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 – TEST 3

Time: 1 Hour & 20 minutes

This examination paper consists of 2 printed pages.

The paper consists of 3 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Number your questions carefully and do **NOT** write your solutions to different questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact, **MUST** be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae
- 2. Electronic calculator (non programmable, non graphical)

1. (a)	Determine the real values of <i>x</i> for which the function $f(x) = \frac{x}{x^2 - 5x - 14}$ is continuous.	[3]
(b)	Evaluate (i) $\lim_{x \to \frac{1}{3}} \frac{1-9x^2}{1-3x}$	[3]

(ii)
$$\lim_{x \to 0} \frac{3\sin 4x}{\sin 3x}$$
 [4]

(c) Differentiate from first principles
$$y = x\sqrt{x}$$
 [7]

(d) The function f is defined by
$$f = \begin{cases} 2x+1 & x \le 3\\ 10-ax & x > 3 \end{cases}$$

Find (i) $\lim_{x \to 3^{-}} f(x)$ [1]

(ii) the value of *a* so that the function is continuous [2]

. (a) A curve has equation $y = \frac{1}{x-3} + x$.

(i) Write down expressions for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [2]

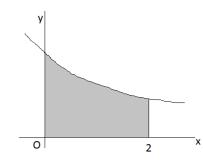
(ii) Find the coordinates of the maximum point A and the minimum point B on the curve. [5]

(b) Given that
$$y = \frac{\cos x}{1 - \sin x}$$
, find $\frac{dy}{dx}$, simplifying your answer. [4]

(c) Given that
$$y = (x+3)\sqrt{2x-3}$$
.

(i) Show that
$$\frac{dy}{dx} = \frac{3x}{\sqrt{2x-3}}$$
 [4]

(ii) Find the equation of the normal where
$$x = 2$$
. [3]


(d) The parametric equation of a curve are $x = t^2 - 4$ and $y = t^3 - 3t$ Find an expression for $\frac{dy}{dx}$. [4]

TOTAL 22 marks

(a) (i) Using the substitution
$$u = 3 + x^2$$
, find $\int x \left(\sqrt{3 + x^2}\right) dx$ [5]

(ii) Evaluate
$$\int_{\pi/6}^{\pi/2} (3\cos x + 2\sin 2x) dx$$
 [5]

(b) The diagram shows part of the curve $y = \frac{1}{(2x+1)^{\frac{1}{3}}}$. The shaded region is bounded by the curve and the lines x = 0, x = 2 and y = 0.

- (i) Find the area of the shaded region.
- (ii) The shaded region is rotated completely about the x-axis.
 Find the volume of the solid formed. [4]

TOTAL 18 marks

[4]

END OF EXAMINATION

3.

2.