HARRISON COLLEGE INTERNAL EXAMINATION, APRIL 2018

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 1 - TEST 3

Time: 1 Hour \& 20 minutes

This examination paper consists of 3 printed pages.
The paper consists of 7 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non - programmable, non - graphical)
3. (a) Determine
(i) $\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x-2}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{4 x}$
(b) Find the values of x for which $\frac{x^{2}+1}{|3 x+2|-8}$ is discontinuous.
(c) A function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{rr}
x+6 & x \leq 3 \\
x^{2} & x>3
\end{array}\right.
$$

(i) Find $\lim _{x \rightarrow 3} f(x)$.
(ii) Determine whether $f(x)$ is continuous at $x=3$. Give a reason for your answer.
(d) Differentiate $f(x)=\cos 2 x$ using first principles.

Total 23 Marks
2. Given that $y=16 x+\frac{1}{x}$, determine the equation of the tangent to the curve at the point where $x=1$.
3. The curve C has equation $y=\frac{x}{4+x^{2}}$.
(i) Show that $\frac{d y}{d x}=\frac{4-x^{2}}{\left(4+x^{2}\right)^{2}}$
(ii) Determine the coordinates of the stationary points on C.

Total 7 Marks
4.

Fig. 1

Fig. 2

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends $A B E$ and $D C F$ are identical isosceles triangles, angle $A B E=$ angle $B A E=30^{\circ}$. The length of $A D$ is 40 cm . The tank is fixed in position with the open top $A B C D$ horizontal. Water is poured into the tank at a constant rate of $200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The depth of water, t seconds after filling starts, is $h \mathrm{~cm}$ (see Fig. 2).
(i) Show that, when the depth of water in the tank is $h \mathrm{~cm}$, the volume, $V \mathrm{~cm}^{3}$, of water in the tank is given by $V=(40 \sqrt{3}) h^{2}$.
(ii) Find the rate at which h is increasing when $h=5$.
5. The parametric equations of a curve are given by

$$
x=\sin \theta, y=\cos 2 \theta, \quad 0 \leq \theta \leq 2 \pi
$$

Show that $\frac{d y}{d x}=-4 \sin \theta$.
6. Use the substitution $u=\sin x+1$ to show that

$$
\int \sin x \cos x(1+\sin x)^{5} d x=\frac{1}{42}(1+\sin x)^{6}(6 \sin x-1)+c
$$

7.

The diagram shows part of the curve $x=\frac{12}{y^{2}}-2$. The shaded region is bounded by the curve, the y-axis and the lines $y=1$ and $y=2$. Find the volume, in terms of π, when the shaded region is rotated through 360° about the y - axis.

$$
\text { 1. (i) } \begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x-2} \\
&=\lim _{x \rightarrow 2} \frac{x\left(x^{2}-4\right)}{x-2} \\
&=\lim _{x \rightarrow 2} \frac{x(x+2)(x-2)}{x-2} \\
&= \lim _{x \rightarrow 2} x(x+2) \\
&= 2(2+2) \\
&=8
\end{aligned}
$$

(ii) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{4 x}$

$$
=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times \frac{3 x}{4 x}
$$

$$
=\frac{3}{4} \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}
$$

$$
=\frac{3}{4} \times 1
$$

$$
=\frac{3}{4}
$$

(b) $|3 x+2|-8=0$

$$
\begin{aligned}
|3 x+2| & =8 \\
3 x+2 & =8 \\
3 x & =6 \\
x & =2 \\
3 x+2 & =-8 \\
3 x & =-10 \\
x & =-\frac{10}{3}
\end{aligned}
$$

c) (i) $\lim _{x \rightarrow 3^{-}} f(x)=3+6=9$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=3^{2}=9 \\
& \lim _{x \rightarrow 3} f(x)=9
\end{aligned}
$$

(ii) $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)$

$$
f(3)=9
$$

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)
$$

Therefore, $f(x)$ is continuous at $x=3$
d) $f(x)=\cos 2 x$

$$
\begin{aligned}
& f(x+h)=\cos (2 x+2 h) \\
& f(x+h)-f(x)=\cos (2 x+2 h)-\cos 2 x \\
& \quad=-2 \sin \left(\frac{2 x+2 h+2 x}{2}\right) \sin \left(\frac{2 x+2 h-2 x}{2}\right) \\
& \lim _{h \rightarrow 0} \frac{-2 \sin (2 x+h) \sin h}{h} \\
& =\lim _{h \rightarrow 0}-2 \sin (2 x+h) \frac{\sin h}{h} \\
& =-2 \sin (2 x+0) \times 1 \\
& =-2 \sin 2 x
\end{aligned}
$$

2. $y=16 x+\frac{1}{x}=16 x+x^{-1}$
$\frac{d y}{d x}=16-x^{-2}=16-\frac{1}{x^{2}}$
when $x=1$
$\frac{d y}{d x}=16-\frac{1}{1^{2}}=15$
$y=16(1)+\frac{1}{1}=17$

1 - for determining the right hand and left hand limits

1 - stating $\lim _{x \rightarrow 3} f(x)=9$

1 - stating that the right hand limit equals the left hand limit

1 - determining $f(3)$
1 - stating that $\lim _{x \rightarrow 3} f(x)=f(3)$
1 - stating that f is continuous at $x=3$

1 - expression for $f(x+h)-f(x)$
1 - use of factor formula

1 - use of limit formula
1 - use of $\lim _{h \rightarrow 0} \frac{\sin x}{x}=1$
1 - evaluating limit at $h=0$
1 - C.A. 0

1 - determining $\frac{d y}{d x}$
$1-\operatorname{substituting} x=1$ into $\frac{d y}{d x}$
1 - evaluating $\frac{d y}{d x}$ when $x=1$
1 - evaluating y when $x=1$
$y=m x+c$
$17=15(1)+c$
$2=c$
$y=15 x+2$
3. (i) $y=\frac{x}{4+x^{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1\left(4+x^{2}\right)-x(2 x)}{\left(4+x^{2}\right)^{2}} \\
& =\frac{4+x^{2}-2 x^{2}}{\left(4+x^{2}\right)^{2}} \\
& =\frac{4-x^{2}}{\left(4+x^{2}\right)^{2}}
\end{aligned}
$$

(ii) $\frac{4-x^{2}}{\left(4+x^{2}\right)^{2}}=0$
$4-x^{2}=0$
$x^{2}=4$
$x= \pm 2$
$y=\frac{2}{4+2^{2}}=\frac{1}{4} \quad\left(2, \frac{1}{4}\right)$
$y=-\frac{2}{4+(-2)^{2}}=-\frac{1}{4} \quad\left(-2,-\frac{1}{4}\right)$
4. (i) $\tan 30^{\circ}=\frac{h}{b}$

$$
b=\frac{3 h}{\sqrt{3}}
$$

Volume $=\frac{1}{2}\left(\frac{6 h}{\sqrt{3}}\right)(h)(40)$

$$
=\frac{120 h^{2}}{\sqrt{3}}
$$

$$
=\frac{120 \sqrt{3} h^{2}}{3}
$$

1 - correct use of $y=m x+c$

1 - correct equation

1 - correct numerator
1 - correct denominator

1 - simplification of the numerator

1 - use of $\frac{d y}{d x}=0$
$1-$ for $x= \pm 2$

2-1 mark for each correct pair of coordinates

1 - correct expression for base of triangle

1 - use of formula for volume of a prism

1 - simplification

$$
=40 \sqrt{3} h^{2}
$$

(ii) $V=40 \sqrt{3} h^{2}$

$$
\begin{gathered}
\frac{d V}{d h}=80 \sqrt{3} h \frac{d h}{d t} \\
200=80 \sqrt{3}(5) \frac{d h}{d t} \\
\frac{200}{400 \sqrt{3}}=\frac{d h}{d t} \\
\frac{1}{2 \sqrt{3}}=\frac{d h}{d t}
\end{gathered}
$$

5. $x=\sin \theta$
$\frac{d x}{d \theta}=\cos \theta$
$y=\cos 2 \theta$
$\frac{d y}{d \theta}=-2 \sin 2 \theta$
$\frac{d y}{d x}=-\frac{2 \sin 2 \theta}{\cos \theta}$
$=-\frac{2(2 \sin \theta \cos \theta)}{\cos \theta}$
$=-4 \sin \theta$
6. $u=\sin x+1 \rightarrow u-1=\sin x$
$\frac{d u}{d x}=\cos x$
$\int(u-1) \cos x\left(u^{5}\right) \frac{d u}{\cos x}$
$\int u^{6}-u^{5} d u$
$=\frac{u^{7}}{7}-\frac{u^{6}}{6}+c$
$=\frac{6 u^{7}-7 u^{6}}{42}+c$
$=\frac{u^{6}(6 u-7)}{42}+c$

1 - determining $\frac{d V}{d h}$

1 - use of parametric differentiation and substituting $h=5$

1 - correct value for $\frac{d h}{d t}$
\qquad
$1-$ for $\frac{d x}{d \theta}=\cos \theta$
$1-$ for $\frac{d y}{d \theta}=-2 \sin 2 \theta$
$1-$ for $\frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}$

1 - for use of $\sin 2 \theta=2 \sin \theta \cos \theta$

1 - differentiating u
1 - substituting $d x=\frac{d u}{\cos x}$
1 - substituting $u-1=\sin x$
1 - simplifying integrand
1 - integrating correctly

1 - combining fraction
1 - correct factoring

$$
\begin{aligned}
& =\frac{(\sin x+1)^{6}(6(\sin x+1)-7)}{42}+c \\
& =\frac{(\sin x+1)^{6}(6 \sin x-1)}{42}+c
\end{aligned}
$$

$$
1-\text { resubstituting } u=\sin x+1
$$

7. $x=\frac{12}{y^{2}}-2$

$$
\begin{aligned}
& x^{2}=\left(\frac{12}{y^{2}}-2\right)\left(\frac{12}{y^{2}}-2\right) \\
& x^{2}=\frac{144}{y^{4}}-\frac{48}{y^{2}}+4 \\
& \pi \int_{1}^{2}\left(144 y^{-4}-48 y^{-2}+4\right) d y \\
& =\pi\left[\frac{144 y^{-3}}{-3}-\frac{48 y^{-1}}{-1}+4 y\right]_{1}^{2} \\
& =\pi\left(\left[\frac{144}{-3(2)^{3}}+\frac{48}{2}+4(2)\right]-\left[\frac{144}{-3(1)^{3}}+\frac{48}{1}+4(1)\right]\right) \\
& =22 \pi
\end{aligned}
$$

1 - determining $x^{2}=\frac{144}{y^{4}}-\frac{48}{y^{2}}+4$

1 - substituting x^{2} into correct formula for volume of revolution

1 - correct integration
1 - substitution of the upper limit
1 - substitution of the lower limit
1 - C.A. 0

HARRISON COLLEGE INTERNAL EXAMINATION, APRIL 2018
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 3 (PREVIEW)
 Time: 1 Hour \& 20 minutes

8. (a) Determine
(i) $\lim _{x \rightarrow 3} \frac{x^{3}-9 x}{x-3}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{2 x}$
(b) Find the values of x for which $\frac{x^{2}+1}{|2 x+3|-6}$ is discontinuous.
(c) A function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{rr}
x+2 & x \leq 2 \\
x^{2} & x>2
\end{array}\right.
$$

(iii) Find $\lim _{x \rightarrow 2} f(x)$.
(iv) Determine whether $f(x)$ is continuous at $x=2$. Give a reason for your answer.
(d) Differentiate $f(x)=\sin 2 x$ using first principles.
9. Given that $y=8 x+\frac{1}{x}$, determine the equation of the tangent to the curve at the point where $x=1$.

$$
[y=7 x+2]
$$

TOTAL 6 Marks
10. The curve C has equation $y=\frac{x}{1+x^{2}}$.
(iii) Show that $\frac{d y}{d x}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$
(iv) Determine the coordinates of the stationary points on C.

$$
\left[\left(1, \frac{1}{2}\right),\left(-1,-\frac{1}{2}\right)\right]
$$

Total 7 Marks
11.

Fig. 1

Fig. 2

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends $A B E$ and $D C F$ are identical isosceles triangles, angle $A B E=$ angle $B A E=30^{\circ}$. The length of $A D$ is 40 cm . The tank is fixed in position with the open top $A B C D$ horizontal. Water is poured into the tank at a constant rate of $100 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The depth of water, t seconds after filling starts, is $h \mathrm{~cm}$ (see Fig. 2).
(iii) Show that, when the depth of water in the tank is $h \mathrm{~cm}$, the volume, $V \mathrm{~cm}^{3}$, of water in the tank is given by $V=(40 \sqrt{3}) h^{2}$.
(iv) Find the rate at which h is increasing when $h=4$.
12. The parametric equations of a curve are given by

$$
x=\cos \theta, y=\sin 2 \theta, \quad 0 \leq \theta \leq 2 \pi
$$

find $\frac{d y}{d x}$.

$$
\left[-\frac{2 \cos 2 \theta}{\sin \theta}\right]
$$

Total 4 Marks
13. Use the substitution $u=\sin x+2$ to show that

$$
\int \cos x(2+\sin x)^{6} d x=\frac{(2+\sin x)^{7}}{7}+c
$$

14. The diagram below represents the finite region R which is enclosed by the curve $y=x^{3}-1$ and the lines $x=0$ and $y=0$.

Calculate the volume of the solid that results from rotating R about the $y-$ axis.
15.

3

Fig. 1

Fig. 2

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends $A B E$ and $D C F$ are identical isosceles triangles. Angle $A B E=$ angle $B A E=30^{\circ}$. The length of $A D$ is 40 cm . The tank is fixed in position with the open top $A B C D$ horizontal. Water is poured into the tank at a constant rate of $200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The depth of water, t seconds after filling starts, is $h \mathrm{~cm}$ (see Fig. 2).
(i) Show that, when the depth of water in the tank is $h \mathrm{~cm}$, the volume, $V \mathrm{~cm}^{3}$, of water in the tank is given by $V=(40 \sqrt{3}) h^{2}$.
(ii) Find the rate at which h is increasing when $h=5$.

3 (i)	$\begin{aligned} & \tan 60=\frac{x}{h} \rightarrow x=h \tan 60 \\ & A=h \times x \\ & V=40 \sqrt{\left(3 h^{2}\right)} \end{aligned}$	B1 M1 A1 [3]	Any correct unsimplified length Correct method for area ag
(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} h}=80 \sqrt{(3 h)}$ If $h=5, \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{1}{2 \sqrt{(3)}}$ or 0.289	B1 M1A1 [3]	```B1 M1 (must be }\div\mathrm{ , not }\times\mathrm{).```

16. a
