HARRISON COLLEGE INTERNAL EXAMINATION, APRIL 2018

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 – TEST 3

Time: 1 Hour & 20 minutes

This examination paper consists of 3 printed pages.

The paper consists of 7 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer **ALL** questions.
- 3. Number your questions carefully and do **NOT** write your solutions to different questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact, **MUST** be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae
- 2. Electronic calculator (non programmable, non graphical)
- 1. (a) Determine

(i)
$$\lim_{x \to 2} \frac{x^3 - 4x}{x - 2}$$
 [3]

(ii)
$$\lim_{x \to 0} \frac{\sin 3x}{4x}$$
 [4]

(b) Find the values of x for which $\frac{x^2+1}{|3x+2|-8|}$ is discontinuous. [4]

(c) A function f(x) is defined as

$f(x) = \begin{cases} x + 6 & x \le 3 \\ x^2 & x > 3 \end{cases}$	
(i) Find $\lim_{x \to 3} f(x)$.	[2]
(ii) Determine whether $f(x)$ is continuous at $x = 3$. Give a reason for your answer.	[4]
(d) Differentiate $f(x) = \cos 2x$ using first principles.	[6]

Total 23 Marks

2. Given that $y = 16x + \frac{1}{x}$, determine the equation of the tangent to the curve at the point where x = 1. [6]

TOTAL 6 Marks

3. The curve *C* has equation $y = \frac{x}{4+x^2}$.

4.

(i) Show that
$$\frac{dy}{dx} = \frac{4-x^2}{(4+x^2)^2}$$
 [3]

(ii) Determine the coordinates of the stationary points on *C*. [4]

Total 7 Marks

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles, angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top *ABCD* horizontal. Water is poured into the tank at a constant rate of 200 cm³s⁻¹. The depth of water, *t* seconds after filling starts, is *h* cm (see Fig. 2).

- Show that, when the depth of water in the tank is h cm, the volume, $V \text{ cm}^3$, of water in the tank is (i) given by $V = (40\sqrt{3})h^2$. [3]
- Find the rate at which *h* is increasing when h = 5. (ii) [3]

Total 6 Marks

5. The parametric equations of a curve are given by

$$x = \sin \theta$$
, $y = \cos 2\theta$, $0 \le \theta \le 2\pi$

Show that
$$\frac{dy}{dx} = -4\sin\theta$$
.

Total 4 Marks

6. Use the substitution $u = \sin x + 1$ to show that

$$\int \sin x \cos x \, (1 + \sin x)^5 \, dx = \frac{1}{42} (1 + \sin x)^6 (6 \sin x - 1) + c$$

[8]

[4]

Total 8 Marks

7.

The diagram shows part of the curve $x = \frac{12}{y^2} - 2$. The shaded region is bounded by the curve, the y – axis and the lines y = 1 and y = 2. Find the volume, in terms of π , when the shaded region is rotated through 360° about the y – axis. [6]

Total 6 Marks

END OF EXAMINATION

1. (i) $\lim_{x \to 2} \frac{x^3 - 4x}{x - 2}$	
$= \lim_{x \to 2} \frac{x(x^2 - 4)}{x - 2}$	1 - Completely factoring $x^3 - 4x$
$= \lim_{x \to 2} \frac{x(x+2)(x-2)}{x-2}$ $= \lim_{x \to 2} x(x+2)$	1 – cancelling $x - 2$
= 2(2+2) = 8	1 – C.A.O
(ii) $\lim_{x \to 0} \frac{\sin 3x}{4x}$ $= \lim_{x \to 0} \frac{\sin 3x}{3x} \times \frac{3x}{4x}$ $= \frac{3}{4} \lim_{x \to 0} \frac{\sin 3x}{3x}$	1 – Separation of terms 1 – Use of appropriate property of limits (S.O.I)
$= \frac{3}{4} \times 1$ $= \frac{3}{4}$	$1 - \text{Use of } \lim_{x \to 0} \frac{\sin x}{x} = 1$ $1 - \text{C.A.O}$
(b) $ 3x + 2 - 8 = 0$	1 – equating denominator to 0
3x + 2 = 8 $3x + 2 = 8$ $3x = 6$	1 - for 3x + 2 = 8
x = 2 3x + 2 = -8 3x = -10	1 - for 3x + 2 = -8
$x = -\frac{10}{3}$	1 – mark for $x = -\frac{10}{3}$ and 2

c) (i) $\lim_{x \to 3^{-}} f(x) = 3 + 6 = 9$	
$\lim_{x \to 3^+} f(x) = 3^2 = 9$	1 – for determining the right hand and left hand limits
$\lim_{x \to 3} f(x) = 9$	$1 - \operatorname{stating} \lim_{x \to 3} f(x) = 9$
(ii) $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)$ $f(3) = 9$ $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$ Therefore, $f(x)$ is continuous at $x = 3$	1 - stating that the right hand limit equals the left hand limit 1 - determining $f(3)$ 1 - stating that $\lim_{x\to 3} f(x) = f(3)$ 1 - stating that f is continuous at x = 3
d) $f(x) = \cos 2x$	
$f(x+h) = \cos(2x+2h)$	
$f(x+h) - f(x) = \cos(2x+2h) - \cos 2x$	1 – expression for $f(x + h) - f(x)$
$= -2\sin\left(\frac{2x+2h+2x}{2}\right)\sin\left(\frac{2x+2h-2x}{2}\right)$	1 – use of factor formula
$\lim_{h \to 0} \frac{-2\sin(2x+h)\sin h}{h}$	1 – use of limit formula
$=\lim_{h\to 0} -2\sin(2x+h)\frac{\sin h}{h}$	$1 - \text{use of } \lim_{h \to 0} \frac{\sin x}{x} = 1$
$= -2\sin(2x+0) \times 1$	1 – evaluating limit at $h = 0$
$= -2\sin 2x$	1 – C.A.O
2. $y = 16x + \frac{1}{x} = 16x + x^{-1}$ $\frac{dy}{dx} = 16 - x^{-2} = 16 - \frac{1}{x^2}$ when $x = 1$ $\frac{dy}{dx} = 16 - \frac{1}{1^2} = 15$ $y = 16(1) + \frac{1}{1} = 17$	$1 - \text{determining } \frac{dy}{dx}$ $1 - \text{substituting } x = 1 \text{ into } \frac{dy}{dx}$ $1 - \text{evaluating } \frac{dy}{dx} \text{ when } x = 1$ $1 - \text{evaluating } y \text{ when } x = 1$

	y = mx + c	1 – correct use of $y = mx + c$
	17 = 15(1) + c	
	2 = c	1 – correct equation
	y = 15x + 2	
3.	(i) $y = \frac{x}{4+x^2}$	
	$\frac{dy}{dx} = \frac{1(4+x^2) - x(2x)}{(4+x^2)^2}$	1 – correct numerator
	$ax \qquad (4+x^2)^2$	1 – correct denominator
	$=\frac{4+x^2-2x^2}{(4+x^2)^2}$	1 – simplification of the numerator
	$=\frac{4-x^2}{(4+x^2)^2}$	
	(ii) $\frac{4 - x^2}{(4 + x^2)^2} = 0$	1 – use of $\frac{dy}{dx} = 0$
	$4-x^2=0$	
	$x^2 = 4$ $x = +2$	$1 - \text{for } x = \pm 2$
	$y = \frac{2}{4+2^2} = \frac{1}{4} \qquad \left(2, \frac{1}{4}\right)$ $y = -\frac{2}{4+(-2)^2} = -\frac{1}{4} \qquad \left(-2, -\frac{1}{4}\right)$	2 – 1 mark for each correct pair of coordinates
4.	(i) $\tan 30^\circ = \frac{h}{b}$	
	$b = \frac{3h}{\sqrt{3}}$	1 – correct expression for base of triangle
	Volume $=\frac{1}{2}\left(\frac{6h}{\sqrt{3}}\right)(h)(40)$	1 – use of formula for volume of a prism
	$=\frac{120h^2}{\sqrt{3}}$	F
	$=\frac{120\sqrt{3}h^2}{3}$	1 – simplification
	$=40\sqrt{3}h^2$	

(ii)
$$V = 40\sqrt{3}h^2$$

$$\frac{dV}{dh} = 80\sqrt{3}h\frac{dh}{dt}$$

$$200 = 80\sqrt{3}(5)\frac{dh}{dt}$$

$$\frac{200}{400\sqrt{3}} = \frac{dh}{dt}$$

$$\frac{1 - \text{use of parametric}}{1 - \text{use of parametric}}$$

$$\frac{1 - \text{use of parametric}}{1 - \text{use of parametric}}$$

$$\frac{1 - \text{use of parametric}}{\frac{differentiation and substituting}{h = 5}$$

$$1 - \text{correct value for } \frac{dh}{dt}$$

$$1 - \text{correct value for } \frac{dh}{dt}$$

$$1 - \text{for } \frac{dx}{dt} = \cos \theta$$

$$y = \cos 2\theta$$

$$\frac{dy}{dt} = -2 \sin 2\theta$$

$$\frac{dy}{dt} = -2 \sin 2\theta$$

$$\frac{dy}{dt} = -\frac{2(2 \sin \theta \cos \theta)}{\cos \theta}$$

$$= -4 \sin \theta$$

$$1 - \text{for } \frac{dy}{dx} = \frac{2}{\cos \theta}$$

$$1 - \text{for } \frac{dy}{dx} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = 2 \sin \theta \cos \theta$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = 2 \sin \theta \cos \theta$$

$$1 - \text{for } \frac{dy}{dt} = 2 \sin \theta \cos \theta$$

$$1 - \text{for } \frac{dy}{dt} = 2 \sin \theta \cos \theta$$

$$1 - \text{for } \frac{dy}{dt} = 2 \sin \theta \cos \theta$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin 2\theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin 2\theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin 2\theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin 2\theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin \theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin \theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin \theta$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin \theta$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = -2 \sin \theta$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{substituting } dt = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{substituting } dt = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for } \frac{dy}{dt} = \frac{dy}{dt} \times \frac{d\theta}{dt}$$

$$1 - \text{for }$$

$= \frac{(\sin x + 1)^{6}(6(\sin x + 1) - 7)}{42} + c$ $= \frac{(\sin x + 1)^{6}(6\sin x - 1)}{42} + c$	1 – resubstituting $u = \sin x + 1$
7. $x = \frac{12}{y^2} - 2$ $x^2 = \left(\frac{12}{y^2} - 2\right) \left(\frac{12}{y^2} - 2\right)$ $x^2 = \frac{144}{y^4} - \frac{48}{y^2} + 4$	1 – determining $x^2 = \frac{144}{y^4} - \frac{48}{y^2} + 4$
$\pi \int_{1} (144y^{-4} - 48y^{-2} + 4) dy$	1 – substituting x^2 into correct formula for volume of revolution
$= \pi \left[\frac{144y^{-3}}{-3} - \frac{48y^{-1}}{-1} + 4y \right]_{1}^{2}$	1 – correct integration
$= \pi \left(\left[\frac{144}{-3(2)^3} + \frac{48}{2} + 4(2) \right] - \left[\frac{144}{-3(1)^3} + \frac{48}{1} + 4(1) \right] \right)$	1 – substitution of the lower limit
$= 22\pi$	1 – C.A.O

HARRISON COLLEGE INTERNAL EXAMINATION, APRIL 2018 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS

UNIT 1 – TEST 3 (PREVIEW)

Time: 1 Hour & 20 minutes

8. (a) Determine

(i)
$$\lim_{x \to 3} \frac{x^3 - 9x}{x - 3}$$
 [18]
(ii) $\lim_{x \to 0} \frac{\sin 5x}{2x}$ [5]

(b) Find the values of x for which $\frac{x^2+1}{|2x+3|-6|}$ is discontinuous.

(c) A function f(x) is defined as

$f(x) = \begin{cases} x + 2 & x \le 2 \\ x^2 & x > 2 \end{cases}$	
(iii) Find $\lim_{x \to 2} f(x)$.	[4]
(iv) Determine whether $f(x)$ is continuous at $x = 2$. Give a reason for your answer.	[Yes]
(d) Differentiate $f(x) = \sin 2x$ using first principles.	$[2\cos 2x]$
	Total 23 Marks

9. Given that $y = 8x + \frac{1}{x}$, determine the equation of the tangent to the curve at the point where x = 1.

$$[y = 7x + 2]$$
TOTAL 6 Marks

 $\left[-\frac{9}{2},\frac{3}{2}\right]$

- 10. The curve *C* has equation $y = \frac{x}{1+x^2}$.
 - (iii) Show that $\frac{dy}{dx} = \frac{1-x^2}{(1+x^2)^2}$

(iv) Determine the coordinates of the stationary points on *C*.

 $\left[\left(1,\frac{1}{2}\right),\left(-1,-\frac{1}{2}\right)\right]$

Total 7 Marks

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends *ABE* and *DCF* are identical isosceles triangles, angle ABE = angle BAE = 30°. The length of *AD* is 40 cm. The tank is fixed in position with the open top *ABCD* horizontal. Water is poured into the tank at a constant rate of 100 cm³s⁻¹. The depth of water, *t* seconds after filling starts, is *h* cm (see Fig. 2).

- (iii) Show that, when the depth of water in the tank is *h* cm, the volume, *V* cm³, of water in the tank is given by $V = (40\sqrt{3})h^2$.
- (iv) Find the rate at which h is increasing when h = 4.

Total 6 Marks

 $\left[\frac{5\sqrt{3}}{48}\right]$

 $\frac{2\cos 2\theta}{\sin \theta}$

12. The parametric equations of a curve are given by

$$x = \cos \theta$$
, $y = \sin 2\theta$, $0 \le \theta \le 2\pi$

find $\frac{dy}{dx}$.

13. Use the substitution $u = \sin x + 2$ to show that

$$\int \cos x \, (2 + \sin x)^6 \, dx = \frac{(2 + \sin x)^7}{7} + c$$

Total 8 Marks

Total 4 Marks

14. The diagram below represents the finite region *R* which is enclosed by the curve $y = x^3 - 1$ and the lines

x = 0 and y = 0.

Calculate the volume of the solid that results from rotating *R* about the y – axis.

Total 6 Marks

 $\left[\frac{3\pi}{5}\right]$

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends *ABE* and *DCF* are identical isosceles triangles. Angle *ABE* = angle *BAE* = 30°. The length of *AD* is 40 cm. The tank is fixed in position with the open top *ABCD* horizontal. Water is poured into the tank at a constant rate of 200 cm³ s⁻¹. The depth of water, *t* seconds after filling starts, is *h* cm (see Fig. 2).

- (i) Show that, when the depth of water in the tank is h cm, the volume, $V \text{ cm}^3$, of water in the tank is given by $V = (40\sqrt{3})h^2$. [3]
- (ii) Find the rate at which h is increasing when h = 5.

(i) $\tan 60 = \frac{x}{h} \rightarrow x = h \tan 60$ 3 **B1** Any correct unsimplified length $A = h \times x$ M1Correct method for area $V = 40\sqrt{(3h^2)}$ A1 ag [3] (ii) $\frac{\mathrm{d}V}{\mathrm{d}h} = 80\sqrt{(3h)}$ **B1 B**1 If h = 5, $\frac{dh}{dt} = \frac{1}{2\sqrt{3}}$ or 0.289 **M1A1** M1 (must be \div , not \times). [3]

3

[3]