HARRISON COLLEGE INTERNAL EXAMINATION, APRIL 2018

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
UNIT 1 - TEST 3 (PREVIEW)

Time: 1 Hour \& 20 minutes

1. (a) Determine
(i) $\lim _{x \rightarrow 3} \frac{x^{3}-9 x}{x-3}$
[18]
(ii) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{2 x}$
(b) Find the values of x for which $\frac{x^{2}+1}{|2 x+3|-6}$ is discontinuous.
(c) A function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{rr}
x+2 & x \leq 2 \\
x^{2} & x>2
\end{array}\right.
$$

(i) Find $\lim _{x \rightarrow 2} f(x)$.
(ii) Determine whether $f(x)$ is continuous at $x=2$. Give a reason for your answer.
(d) Differentiate $f(x)=\sin 2 x$ using first principles.
2. Given that $y=8 x+\frac{1}{x^{\prime}}$ determine the equation of the tangent to the curve at the point where $x=1$.

$$
[y=7 x+2]
$$

TOTAL 6 Marks
3. The curve C has equation $y=\frac{x}{1+x^{2}}$.
(i) Show that $\frac{d y}{d x}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$
(ii) Determine the coordinates of the stationary points on C.

$$
\left[\left(1, \frac{1}{2}\right),\left(-1,-\frac{1}{2}\right)\right]
$$

4.

Fig. 1

Fig. 2

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends $A B E$ and $D C F$ are identical isosceles triangles, angle $A B E=$ angle $B A E=30^{\circ}$. The length of $A D$ is 40 cm . The tank is fixed in position with the open top $A B C D$ horizontal. Water is poured into the tank at a constant rate of $100 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The depth of water, t seconds after filling starts, is $h \mathrm{~cm}$ (see Fig. 2).
(i) Show that, when the depth of water in the tank is $h \mathrm{~cm}$, the volume, $V \mathrm{~cm}^{3}$, of water in the tank is given by $V=(40 \sqrt{3}) h^{2}$.
(ii) Find the rate at which h is increasing when $h=4$.
5. The parametric equations of a curve are given by

$$
x=\cos \theta, y=\sin 2 \theta, \quad 0 \leq \theta \leq 2 \pi
$$

find $\frac{d y}{d x}$.

$$
\left[-\frac{2 \cos 2}{\sin \theta}\right]
$$

Total 4 Marks
6. Use the substitution $u=\sin x+2$ to show that

$$
\int \cos x(2+\sin x)^{6} d x=\frac{(2+\sin x)^{7}}{7}+c
$$

7. The diagram below represents the finite region R which is enclosed by the curve $y=x^{3}-1$ and the lines $x=0$ and $y=0$.

Calculate the volume of the solid that results from rotating R about the $y-$ axis.

