PURE MATHEMATICS

UNIT 1 - TEST 3 (2017 PREVIEW)
TIME: 1 Hour \& 20 minutes

1. (a) Find $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
(ans: $\frac{1}{6}$)
(b) Given
$f(x)=\left\{\begin{array}{l}x^{2}+1, x>3 \\ 4+p x, x \leq 3\end{array}\right\}$
Find the values of p if $f(x)$ is continuous at $x=3$.
(ans: $\mathrm{p}=2$)
(c) Prove by using first principles that if $y=\sin 2 x$ then $\frac{d y}{d x}=2 \cos 2 x$.
2.

(a)
(i) Find $\frac{d y}{d x}$ when $y=\frac{3 x+2}{5 x-1}$ (ans: $\frac{-13}{(5 x+1)^{2}}$)
(ii) Find $\frac{d y}{d x}$ when $y=x \sqrt[3]{1-x}$
(ans: $-\frac{1}{3} x(1-x)^{\frac{-2}{3}}+\sqrt[3]{1-x}$)
(b) The diagram shows a closed box in the form of a cuboid. The length of the box is $2 x \mathrm{~cm}$, its width is $x \mathrm{~cm}$ and its height is $y \mathrm{~cm}$.

The total surface area of the box is $108 \mathrm{~cm}^{3}$.
(i) Write down an equation involving x and y and show that

$$
x y=18-\frac{2}{3} x^{2}
$$

(ii) Hence show that the volume V cm 3 of the box is given by

$$
V=36 x-\frac{4}{3} x^{3}
$$

(iii) Find the maximum value of V, showing that the value you have found is maximum value.
(ans: $V_{\max }=72 \mathrm{~cm}^{3}$)
(c) A curve is given parametrically by

$$
x=\frac{1}{3} \sin 4 \theta+1 \quad y=1-\cos 4 \theta
$$

(i) Find $\frac{d y}{d x}$ in terms of θ (ans: $3 \tan 4 \theta$)
(ii) Find the equation of the normal to the given curve at the point where $\theta=\frac{\pi}{16}$.
(ans: $3 y+x=4-\frac{4 \sqrt{2}}{3}$)
3.
(a)

The curve with equation $y=x^{3}-x+6$ is sketched below.

The curve cuts the x-axis at the point $A(-2,0)$ and the y-axis at the point B.
(i) State the y-coordinate of the point B.
(ii) Find $\int_{-2}^{0}\left(x^{3}-x+6\right) \mathrm{d} x$.
(iii) Hence find the area of the shaded region bounded by the curve $y=x^{3}-x+6$ and the line AB .

$$
\text { (ans: (i) }(0,6) \quad \text { (ii) } 10 \text { (iii) } 4 \text {) }
$$

(b) (i) Find $\int_{0}^{5} \sin \left(\frac{x}{3}\right) d x$.
(ii) Using the substitution $u=2 x-1$, find

$$
\int_{1}^{5} x \sqrt{2 x-1} d x \quad \text { (ans: } \frac{1182}{60} \text {) }
$$

(c) The gradient of a curve is given by $\frac{d y}{d x}=(2 x-1)^{4}$. The point $(1,2)$ lies on the curve. Find the equation of the curve.

$$
\text { (ans: } \left.y=\frac{(2 x-1)^{5}}{10}+\frac{19}{10}\right)
$$

