HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2016 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS 1 hour 20 minutes

This examination paper consists of 2 printed pages. This paper consists of 9 questions. The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer ALL questions
- (iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

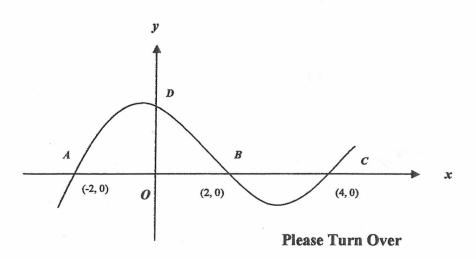
- (a) Mathematical formulae
- (b) Scientific calculator (non-programmable, non-graphical)
- Given that p and q are propositions, use the algebra of propositions to simplify fully
 (p ∧ q) ∨ (~ p ∧ q)
 [3]

Total: 3 marks

2) (i) Express in terms of n , $\sum_{r=1}^{n+1} (2r)$.	[3]
(ii) Given that $\sum_{r=1}^{n+1} (2r) = 12$, find the possible value(s) of <i>n</i> .	[5]

Total: 8 marks

3) (a) The sketch below shows part of the graph of $y = x^3 + px^2 + qx + r$, where p, q and r are constants.



1

The points A, B and C have coordinates (-2, 0), (2, 0) and (4, 0) respectively.

The curve crosses the y-axis at **D**.

(i) Evaluate p, q and r.

(ii) Determine the coordinates of D.

(b) Given the polynomial $f(h) = -3h^3 + 2h^2 - h + 2$, solve f(h) = 0 for $h \in \mathbb{R}$. [6]

Total: 13 marks

[6]

[1]

4) Prove by mathematical induction that $\sum_{r=1}^{n} \frac{1}{(4r-3)(4r+1)} = \frac{n}{4n+1} \forall n \in \mathbb{N}.$ [6]

Total: 6 marks

- 5) (a) Solve for p the equation $3^{2p} 10(3^p) + 16 = 0$, giving your answer in terms of *logs*. [4] (b) Solve for x the equation $e^{2x} + 4e^{-2x} = 4$, giving your answer in terms of *logs*. [4] Total: 8 marks
- 6) The population, P(n), of a new housing development at 1st January 2000 was 300. The population growth after *n* years was found to be directly proportional to $(1.02)^n$.

Calculate estimates of

	Total: 6 marks
(ii) the year in which the population is expected to first reached 510.	[4]
(i) the population at the beginning of the year 2015	[2]

7) (a) The function f is defined by f: $x \rightarrow ln(x-3)$; $x \in \mathbb{R}$, x > 3.

(i) Sketch the graph of f , showing clearly any intersection with the axe (ii) Determine an expression for the inverse function, $f^{-1}(x)$. (iii) State for $f^{-1}(x)$	es. [2] [3]
a) the domain b) the range	[2]
(b) The function g is defined by g: $x \rightarrow e^{2x} + 3$, $x \in \mathbb{R}$. Determine $fg(x)$.	[2] Total: 9 marks
8) Find the range of values of $x \in \mathbb{R}$ for which $\frac{x+2}{2x-3} \le 1, x \ne \frac{3}{2}$	[3]
9) Solve for $x \in \mathbb{R}$, $x > 3x - 2$	[4] Total: 7 marks

End of Examination